Home About us Contact | |||
Peripheral Targets (peripheral + target)
Selected AbstractsInfants' Use of Constraints to Speed Information Processing and to Anticipate EventsINFANCY, Issue 4 2002Thomas M. Dougherty Two experiments were conducted with 28-week-old infants using a modification of the Visual Expectation Paradigm. The first sought to determine whether speed of information processing (SIP) could be assessed in infants using a reaction time (RT) measure and approach that is widely used to measure SIP in adults. Infants saw a center fixation cue followed by a peripheral target that could appear in 1, 2, or 4 locations. There was a linear increase in RT of eye movements as the number of locations increased from 1 to 2 and to 4 targets, suggesting that the paradigm does measure SIP. The second experiment asked whether varying the number of cue-target pairings would augment or impair infant's SIP in the trade-off between the benefit of additional information and the liability of additional memory load. The findings showed that the presence of cue information can eliminate the difference in RT between the 1- and 2-location conditions, whereas no benefit of cue was obtained for the 4-location condition. [source] Cortical Indexes of Saccade Planning Following Covert Orienting in 20-Week-Old InfantsINFANCY, Issue 2 2001John E. Richards This study examined scalp-recorded, event-related potential (ERP) indexes of saccade planning in 20-week-old infants. A spatial cuing procedure was used in which the infants were presented with a central fixation stimulus and a peripheral cue. A peripheral target followed the cue on the ipsilateral or contralateral side of the cue. The procedure resulted in covert orienting of attention in these participants, reflected in behavioral (e.g., response facilitation or inhibition of return depending on cue-target stimulus-onset asynchrony) and ERP (P1 facilitation to ipsilateral target) indexes of covert orienting of attention. A presaccadic ERP that occurred over the frontal cortex about 50 msec before the saccade onset was largest when the saccade was to a target in a cued location. A presaccadic ERP potential that occurred about 300 msec before the saccade onset was largest for the saccades toward the cued location whether the target was present or not. These results suggest that saccade planning occurs in infants at this age and that infant saccade planning is controlled by cortical systems. [source] Hyperfrontality in patients with schizophrenia during saccade and antisaccade tasks: A study with fMRIPSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 2 2009Mai Fukumoto-Motoshita mms Aims:, Antisaccadic eye movements, requiring inhibition of a saccade toward a briefly appearing peripheral target, are known to be impaired in schizophrenia. Previous neuroimaging studies have indicated that patients with schizophrenia show diminished activations in the frontal cortex and basal ganglia. These studies used target fixation as a baseline condition. However, if the levels of brain activities at baseline are not compatible between patients and healthy subjects, between-group comparison on antisaccade-related activations is consequently invalidated. One possibility is that patients with schizophrenia may present with greater activation during fixation than healthy subjects. In order to examine this possibility, here we investigated brain activities associated with antisaccade in the two groups without using target fixation at baseline. Methods:, Functional brain images were acquired during prosaccades and antisaccades in 18 healthy subjects and 18 schizophrenia patients using a box-car functional magnetic resonance imaging design. Eye movements were measured during scanning. Results:, In the patient group, the elevated activities in the dorsolateral prefrontal cortex (DLPFC) and thalamus, normally seen in antisaccade tasks relative to saccade tasks, were no longer observed. Moreover, in normal subjects, activities in the DLPFC and thalamus were greater during the antisaccade task than during the saccade task. In patients, no such difference was observed between the two tasks, suggesting that these brain regions are likely to be highly activated even by a simple task such as fixation. In particular, the DLPFC and thalamus in patients were not activated at a level commensurate with the difficulty of the tasks presented. Conclusions:, From these results, it is suggested that schizophrenia entails dysfunctions in the fronto-striato-thalamo-cortical network associated with motor function control. [source] Prepulse inhibition of the acoustic startle reflex and oculomotor controlPSYCHOPHYSIOLOGY, Issue 4 2005Ulrich Ettinger Abstract Prepulse inhibition and the suppression of reflexive saccades on the antisaccade task are thought to tap inhibitory function. Reports of a lack of association between these measures suggest that they reflect different facets of inhibition. This study aimed to reexamine this relationship in a large sample and investigate the association of prepulse inhibition with oculomotor tasks that require inhibition of a reflexive saccade with lower concurrent processing demands than antisaccades, namely the oculomotor delayed response and fixation with distractors tasks. One hundred and seven healthy volunteers took part. Prepulse inhibition was uncorrelated with oculomotor performance. The error rate was highest for antisaccades, intermediate for the delayed response task, and lowest for fixation with distractors, and was correlated across tasks. These findings provide no evidence of a relationship between prepulse inhibition and oculomotor inhibition. Failure in suppressing reflexive saccades toward a peripheral target may represent a common inhibitory component underlying these oculomotor tasks. [source] Dynamic changes in glypican-1 expression in dorsal root ganglion neurons after peripheral and central axonal injuryEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004Stefan Bloechlinger Abstract Glypican-1, a glycosyl phosphatidyl inositol (GPI)-anchored heparan sulphate proteoglycan expressed in the developing and mature cells of the central nervous system, acts as a coreceptor for diverse ligands, including slit axonal guidance proteins, fibroblast growth factors and laminin. We have examined its expression in primary sensory dorsal root ganglion (DRG) neurons and spinal cord after axonal injury. In noninjured rats, glypican-1 mRNA and protein are constitutively expressed at low levels in lumbar DRGs. Sciatic nerve transection results in a two-fold increase in mRNA and protein expression. High glypican-1 expression persists until the injured axons reinnervate their peripheral targets, as in the case of a crushed nerve. Injury to the central axons of DRG neurons by either a dorsal column injury or a dorsal root transection also up-regulates glypican-1, a feature that differs from most DRG axonal injury-induced genes, whose regulation changes only after peripheral and not central axonal injury. After axonal injury, the cellular localization of glypican-1 changes from a nuclear pattern restricted to neurons in noninjured DRGs, to the cytoplasm and membrane of injured neurons, as well as neighbouring non-neuronal cells. Sciatic nerve transection also leads to an accumulation of glypican-1 in the proximal nerve segment of injured axons. Glypican-1 is coexpressed with robo 2 and its up-regulation after axonal injury may contribute to an altered sensitivity to axonal growth or guidance cues. [source] Gaze Following in NewbornsINFANCY, Issue 1 2004Teresa Farroni Eye gaze has been shown to be an effective cue for directing attention in adults. Whether this ability operates from birth is unknown. Three experiments were carried out with 2- to 5-day-old newborns. The first experiment replicated the previous finding that newborns are able to discriminate between direct and averted gaze, and extended this finding from real to schematic faces. In Experiments 2 and 3 newborns were faster to make saccades to peripheral targets cued by the direction of eye movement of a central schematic face, but only when the motion of the pupils was visible. These results suggest that newborns may show a rudimentary form of gaze following. [source] Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injuryJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010Petrica-Adrian Panaite Abstract Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine ,-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission. © 2010 Wiley-Liss, Inc. [source] Expression pattern of calcitonin gene-related peptide in the superior colliculus during postnatal development: Demonstration of its intrinsic nature and possible rolesTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2006Inmaculada Gerrikagoitia Abstract Calcitonin gene-related peptide (CGRP) is a widespread neuropeptide with multiple central and peripheral targets. In an analysis on the expression of this peptide throughout the rat brain during postnatal development, we observed a discrepancy between results obtained by immunohistochemistry and by in situ hybridization. In the superior colliculus (SC), only the immunohistochemical signal could be detected (Terrado et al. [1997] Neuroscience 80:951,970). Here we focus our attention on this structure because the temporal pattern of CGRP immunoreactivity observed in the SC suggested the participation of this peptide in the postnatal maturation of the SC. In the present study, we describe in detail the postnatal development of collicular CGRP-immunoreactive structures and their spatiotemporal relationship with cholinergic modules and definitively demonstrate the local expression of CGRP in the SC. CGRP-immunopositive axons and neurons were distributed within the most ventral part of superficial strata and in the intermediate strata of the SC, showing a peak in staining intensity and density at the end of the first postnatal week. At P14, CGRPergic terminal fibers are arranged in small, clearly defined patches in a complementary manner with respect to the cholinergic modules, which start forming at this stage. By using Western blot and RT-PCR analyses, and by means of injections of antisense oligonucleotides, both the presence of CGRP peptide in the SC and the local expression of ,-CGRP transcripts in collicular neurons were demonstrated. A possible role of CGRP is discussed in the context of postnatal modular compartmentalization of collicular afferents. J. Comp. Neurol. 494:721,737, 2006. © 2005 Wiley-Liss, Inc. [source] Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survivalTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2001Julie A. Carlsten Abstract We have investigated the fate of different neurotrophin-responsive subpopulations of dorsal root ganglion neurons in dystonia musculorum (dt) mice. These mice have a null mutation in the cytoskeletal linker protein, dystonin. Dystonin is expressed by all sensory neurons and cross links actin filaments, intermediate filaments, and microtubules. The dt mice undergo massive sensory neurodegeneration postnatally and die at around 4 weeks of age. We assessed the surviving and degenerating neuronal populations by comparing the dorsal root ganglion (DRG) neurons and central and peripheral projections in dt mice and wildtype mice. Large, neurofilament-H-positive neurons, many of which are muscle afferents and are neurotrophin-3 (NT-3)-responsive, were severely decreased in number in dt DRGs. The loss of muscle afferents was correlated with a degeneration of muscle spindles in skeletal muscle. Nerve growth factor (NGF)-responsive populations, which were visualized using calcitonin gene-related peptide and p75, appeared qualitatively normal in the lumbar spinal cord, DRG, and hindlimb skin. In contrast, glial cell line-derived neurotrophic factor (GDNF)-responsive populations, which were visualized using the isolectin B-4 and thiamine monophosphatase, were severely diminished in the lumbar spinal cord, DRG, and hindlimb skin. Analysis of NT-3, NGF, and GDNF mRNA levels using semiquantitative reverse transcriptase-polymerase chain reaction revealed normal trophin synthesis in the peripheral targets of dt mice, arguing against decreased trophic synthesis as a possible cause of neuronal degeneration. Thus, the absence of dystonin results in the selective survival of NGF-responsive neurons and the postnatal degeneration of many NT-3- and GDNF-responsive neurons. Our results reveal that the loss of this ubiquitously expressed cytoskeletal linker has diverse effects on sensory subpopulations. Moreover, we show that dystonin is critical for the maintenance of certain DRG neurons, and its function may be related to neurotrophic support. J. Comp. Neurol. 432:155,168, 2001. © 2001 Wiley-Liss, Inc. [source] |