Peripheral Sensitization (peripheral + sensitization)

Distribution by Scientific Domains


Selected Abstracts


Peripheral sensitization in migraine,role for P2X purinergic receptors in the dura,vascular sensory pathway

DRUG DEVELOPMENT RESEARCH, Issue 6 2007
Ernest A. Jennings
Abstract Peripheral sensitization is still considered a prime contributor underlying the mechanisms of migraine. Trigeminal primary afferent neurons are the first neurons in the dural nociceptive pathway, and activation results in conscious perception of pain. Peripheral sensitization can lower the activation threshold of primary afferent neurons, rendering them more excitable, allowing for increases in release of neurotransmitter from both central and peripheral terminals. Increase in neurotransmitter release from central terminals contributes to excitation of second-order neurons, while the release of peptides from peripheral terminals has been implicated in neurogenic inflammation. Adenosine 5,-triphosphate (ATP) causes pain in human studies, and depolarize sensory neurons. There is evidence of the action of ATP at many levels in the dura,vascular sensory pathway. Animal studies have shown that some P2X receptors are located in neurons innervating the dura, including the P2X3 receptor, which is most often shown to be involved in nociceptive pathways. In this article, we briefly review peripheral sensitization in relation to migraine and provide emphasis for P2X receptor involvement where it is available. Drug Dev Res 68:321,328, 2007. © 2007 Wiley-Liss, Inc. [source]


Nerve growth factor-evoked nociceptor sensitization in pig skin in vivo

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2010
Roman Rukwied
Abstract Peripheral sensitization of skin nociceptors by nerve growth factor (NGF) was explored in pig skin in vivo. As an objective output measure, the area of axon-reflex-mediated erythema was assessed upon mechanical, thermal, chemical, and electrical stimuli delivered at 1, 3, and 7 days after i.d. injection of 1 ,g NGF into the pig's back skin (n = 8). Pretreatment with NGF provoked a sensitization to mechanical (600 mN), thermal (10 sec 49°C) and chemical (15 ,l, pH 3) stimuli that lasted for 7 days. No sensitization, however, was found in response to weak mechanical (100 mN), weak thermal (10 sec 45°C), or electrical stimuli. Irrespective of the skin pretreatment (NGF or PBS vehicle control), the area of electrically induced erythema decreased upon repetition (days 1,7) by 70% (P < 0.05). Sensitization of sensory endings by NGF upon mechanical, heat, and chemical stimuli suggests recruitment of sensory transducer molecules [e.g., TRPV1, acid-sensing ion channels (ASICs)]. In contrast, the gradual decrease in electrically induced erythema over 7 days might be attributable to axonal desensitization and possibly activity-dependent down-regulation of sodium channels. Thus, long-lasting sensitization processes of nociceptor endings or axonal sodium channel desensitization mechanisms can be explored in the pig as a translational experimental animal model. © 2010 Wiley-Liss, Inc. [source]


Peripheral sensitization in migraine,role for P2X purinergic receptors in the dura,vascular sensory pathway

DRUG DEVELOPMENT RESEARCH, Issue 6 2007
Ernest A. Jennings
Abstract Peripheral sensitization is still considered a prime contributor underlying the mechanisms of migraine. Trigeminal primary afferent neurons are the first neurons in the dural nociceptive pathway, and activation results in conscious perception of pain. Peripheral sensitization can lower the activation threshold of primary afferent neurons, rendering them more excitable, allowing for increases in release of neurotransmitter from both central and peripheral terminals. Increase in neurotransmitter release from central terminals contributes to excitation of second-order neurons, while the release of peptides from peripheral terminals has been implicated in neurogenic inflammation. Adenosine 5,-triphosphate (ATP) causes pain in human studies, and depolarize sensory neurons. There is evidence of the action of ATP at many levels in the dura,vascular sensory pathway. Animal studies have shown that some P2X receptors are located in neurons innervating the dura, including the P2X3 receptor, which is most often shown to be involved in nociceptive pathways. In this article, we briefly review peripheral sensitization in relation to migraine and provide emphasis for P2X receptor involvement where it is available. Drug Dev Res 68:321,328, 2007. © 2007 Wiley-Liss, Inc. [source]


Sensitization of meningeal nociceptors: inhibition by naproxen

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008
Dan Levy
Abstract Migraine attacks associated with throbbing (manifestation of peripheral sensitization) and cutaneous allodynia (manifestation of central sensitization) are readily terminated by intravenous administration of a non-selective cyclooxygenase (COX) inhibitor. Evidence that sensitization of rat central trigeminovascular neurons was also terminated in vivo by non-selective COX inhibition has led us to propose that COX inhibitors may act centrally in the dorsal horn. In the present study, we examined whether COX inhibition can also suppress peripheral sensitization in meningeal nociceptors. Using single-unit recording in the trigeminal ganglion in vivo, we found that intravenous infusion of naproxen, a non-selective COX inhibitor, reversed measures of sensitization induced in meningeal nociceptors by prior exposure of the dura to inflammatory soup (IS): ongoing activity of A,- and C-units and their response magnitude to mechanical stimulation of the dura, which were enhanced after IS, returned to baseline after naproxen infusion. Topical application of naproxen or the selective COX-2 inhibitor N -[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) onto the dural receptive field of A,- and C-unit nociceptors also reversed the neuronal hyper-responsiveness to mechanical stimulation of the dura. The findings suggest that local COX activity in the dura could mediate the peripheral sensitization that underlies migraine headache. [source]


Neuron,Glia Signaling in Trigeminal Ganglion: Implications for Migraine Pathology

HEADACHE, Issue 7 2007
Srikanth Thalakoti BS
Objective.,The goal of this study was to investigate neuronal,glial cell signaling in trigeminal ganglia under basal and inflammatory conditions using an in vivo model of trigeminal nerve activation. Background.,Activation of trigeminal ganglion nerves and release of calcitonin gene-related peptide (CGRP) are implicated in the pathology of migraine. Cell bodies of trigeminal neurons reside in the ganglion in close association with glial cells. Neuron,glia interactions are involved in all stages of inflammation and pain associated with several central nervous system (CNS) diseases. However, the role of neuron,glia interactions within the trigeminal ganglion under normal and inflammatory conditions is not known. Methods.,Sprague,Dawley rats were utilized to study neuron,glia signaling in the trigeminal ganglion. Initially, True Blue was used as a retrograde tracer to localize neuronal cell bodies in the ganglion by fluorescent microscopy and multiple image alignment. Dye-coupling studies were conducted under basal conditions and in response to capsaicin injection into the TMJ capsule. S100B and p38 expression in neurons and glia were determined by immunohistochemistry following chemical stimulation. CGRP levels in the ganglion were measured by radioimmunoassay in response to capsaicin. In addition, the effect of CGRP on the release of 19 different cytokines from cultured glial cells was investigated by protein microarray analysis. Results.,In unstimulated control animals, True Blue was detected primarily in neuronal cell bodies localized in clusters within the ganglion corresponding to the V3 region (TMJ capsule), V2 region (whisker pad), or V1 region (eyebrow and eye). However, True Blue was detected in both neuronal cell bodies and adjacent glia in the V3 region of the ganglion obtained from animals injected with capsaicin. Dye movement into the surrounding glia correlated with the time after capsaicin injection. Chemical stimulation of V3 trigeminal nerves was found to increase the expression of the inflammatory proteins S100B and p38 in both neurons and glia within the V3 region. Unexpectedly, increased levels of these proteins were also observed in the V2 and V1 regions of the ganglion. CGRP and the vesicle docking protein SNAP-25 were colocalized in many neuronal cell bodies and processes. Decreased CGRP levels in the ganglion were observed 2 hours following capsaicin stimulation. Using protein microarray analysis, CGRP was shown to differentially regulate cytokine secretion from cultured trigeminal ganglion glia. Conclusions.,We demonstrated that activation of trigeminal neurons leads to changes in adjacent glia that involve communication through gap junctions and paracrine signaling. This is the first evidence, to our knowledge, of neuron,glia signaling via gap junctions within the trigeminal ganglion. Based on our findings, it is likely that neuronal,glial communication via gap junctions and paracrine signaling are involved in the development of peripheral sensitization within the trigeminal ganglion and, thus, are likely to play an important role in the initiation of migraine. Furthermore, we propose that propagation of inflammatory signals within the ganglion may help to explain commonly reported symptoms of comorbid conditions associated with migraine. [source]


Evidence for Antinociceptive Activity of Botulinum Toxin Type A in Pain Management

HEADACHE, Issue 2003
K. Roger Aoki PhD
The neurotoxin, botulinum toxin type A, has been used successfully, in some patients, as an analgesic for myofascial pain syndromes, migraine, and other headache types. The toxin inhibits the release of the neurotransmitter, acetylcholine, at the neuromuscular junction thereby inhibiting striated muscle contractions. In the majority of pain syndromes where botulinum toxin type A is effective, inhibiting muscle spasms is an important component of its activity. Even so, the reduction of pain often occurs before the decrease in muscle contractions suggesting that botulinum toxin type A has a more complex mechanism of action than initially hypothesized. Current data points to an antinociceptive effect of botulinum toxin type A that is separate from its neuromuscular activity. The common biochemical mechanism, however, remains the same between botulinum toxin type A's effect on the motor nerve or the sensory nerve: enzymatic blockade of neurotransmitter release. The antinociceptive effect of the toxin was reported to block substance P release using in vitro culture systems.1 The current investigation evaluated the in vivo mechanism of action for the antinociceptive action of botulinum toxin type A. In these studies, botulinum toxin type A was found to block the release of glutamate. Furthermore, Fos, a product of the immediate early gene, c- fos, expressed with neuronal stimuli was prevented upon peripheral exposure to the toxin. These findings suggest that botulinum toxin type A blocks peripheral sensitization and, indirectly, reduces central sensitization. The recent hypothesis that migraine involves both peripheral and central sensitization may help explain how botulinum toxin type A inhibits migraine pain by acting on these two pathways. Further research is needed to determine whether the antinociceptive mechanism mediated by botulinum toxin type A affects the neuronal signaling pathways that are activated during migraine. [source]


Review article: visceral hypersensitivity in irritable bowel syndrome: molecular mechanisms and therapeutic agents

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2009
A. AKBAR
Summary Background, Although development of visceral pain is an important defensive mechanism, hypersensitivity results in a significant clinical problem and is likely to be one of the major factors involved in the pathogenesis of abdominal and chest pain in functional bowel disorders (FBDs). Understanding of the molecular mechanisms involved in peripheral sensitization of visceral nociceptors has advanced as a result of the experimental studies, especially in animal models, which have led to knowledge and identification of key mediators and receptors. Aim, To provide a comprehensive review focused on the peripheral mechanisms believed to be responsible for sensitization and potential molecular targets for a disorder which is common, distressing and has sub-optimal treatment options. Methods, Literature review using Ovid and Pubmed from 1966. Results, There is substantial interest in the development of new drugs for treatment of FBDs in the background of advances in understanding the molecular and physiological mechanisms of visceral hypersensitivity. The potential drug targets include TPRV1, ASICs, voltage-gated sodium channels, ATP, PAR-2, cannabinoid, prostaglandin, tachykinin and 5HT3 receptors. Conclusion, It is anticipated that with advancing molecular understanding of the basis of visceral hypersensitivity, the next decade will see accelerated development of new molecules for treatment of functional bowel diseases. [source]