Peripheral Myelin Protein (peripheral + myelin_protein)

Distribution by Scientific Domains


Selected Abstracts


STEROID EFFECTS ON THE GENE EXPRESSION OF PERIPHERAL MYELIN PROTEINS

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002
RC Melcangi
The present article summarizes recent observations obtained in our laboratory which clearly indicate that sex steroids exert relevant effects on the peripheral nervous system. In particular, the following important points have emerged: (1) Steroids exert stimulatory actions on the synthesis of the proteins proper of the peripheral myelin (e.g., glycoprotein Po and peripheral myelin protein 22) in vivo and on the Schwann cells in culture; (2) in many cases the actions of hormonal steroids are not due to their native molecular forms but rather to their metabolites (e.g., dihydroprogesterone and tetrahydroprogesterone in the case of progesterone; dihydrotestosterone and 5 alpha-androstane-3 alpha,17 beta -diol in the case of testosterone); (3) the mechanism of action of the various steroidal molecules may involve both classical (progesterone and androgen receptors) and nonclassical steroid receptors (GABA, receptor); and finally, (4) the stimulatory action of steroid hormones on the proteins of the peripheral myelin might have clinical significance in cases in which the rebuilding of myelin is needed (e.g., aging, peripheral injury, demyelinating diseases, and iabetic neuropathy). [source]


Early Electrophysiological Changes In Transgenic Rat Model Of Charcot-Marie-Tooth

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001
M Grandis
Recently, a reliable transgenic rat model of human Charcot-Marie-Tooth type 1 A has been developed. So far, neurophysiological studies have been performed only in advanced stages of rat disease. Moreover, axonal involvement, which is known to occur in human CMT1A, has never been observed in this rat model. Affected rats show overexpression of Peripheral Myelin Protein (PMP-22) and a peripheral hypomyelinating neuropathy. We perfomed an electrophysiological study in two heterozygous PMP-22 transgenic rats and in one normal control, matched for age (3 weeks) and weight (average: 60 g). Recordings were performed in vivo by stimulating the sciatic nerve at both sciatic notch and ankle sites and recording the Hoffman reflex and direct muscle responses (CMAP). The H-reflex related SNCV and MNCV were calculated by measuring the distance between the sciatic notch and the ankle sites and the respective latencies. The two transgenic rats showed different levels of PMP-22 overexpression, as judged by quantitative PCR. The rat with a lower PMP-22 gene level showed a 30% reduction of MNCV compared to the normal control, while SNCV was not reduced. The CMAP was sized approximately 45% of the normal rat while the ratio between H wave amplitude and CMAP was 30% of the normal, the H wave amplitude being more affected than the CMAP. The action potentials in the rat with a higher transgene level were not recordable. Our data demonstrate that slowing of MNCV is an early finding in the CMT1A rat model. The marked reduction of H wave amplitude in front of a normal SNCV suggests a possible early axonal damage of sensory fibers. The entity of electrophysiological compromission positively correlated with the number of copies for PMP-22 gene. All together these considerations prove the sensitivity of this method, however further studies are needed to confirm these results and to prove that this model may be suitable to investigate the effects of therapeutic approaches. [source]


Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a,

GLIA, Issue 12 2009
Jonathan D. Verrier
Abstract Peripheral myelin protein 22 (PMP22) is a dose-sensitive, disease-associated protein primarily expressed in myelinating Schwann cells. Either reduction or overproduction of PMP22 can result in hereditary neuropathy, suggesting a requirement for correct protein expression for peripheral nerve biology. PMP22 is post-transcriptionally regulated and the 3,untranslated region (3,UTR) of the gene exerts a negative effect on translation. MicroRNAs (miRNAs) are small regulatory molecules that function at a post-transcriptional level by targeting the 3,UTR in a reverse complementary manner. We used cultured Schwann cells to demonstrate that alterations in the miRNA biogenesis pathway affect PMP22 levels, and endogenous PMP22 is subjected to miRNA regulation. GW-body formation, the proposed cytoplasmic site for miRNA-mediated repression, and Dicer expression, an RNase III family ribonuclease involved in miRNA biogenesis, are co-regulated with the differentiation state of Schwann cells. Furthermore, the levels of Dicer inversely correlate with PMP22, while the inhibition of Dicer leads to elevated PMP22. Microarray analysis of actively proliferating and differentiated Schwann cells, in conjunction with bioinformatics programs, identified several candidate PMP22-targeting miRNAs. Here we demonstrate that miR-29a binds and inhibits PMP22 reporter expression through a specific miRNA seed binding region. Over-expression of miR-29a enhances the association of PMP22 RNA with Argonaute 2, a protein involved in miRNA function, and reduces the steady-state levels of PMP22. In contrast, inhibition of endogenous miR-29a relieves the miRNA-mediated repression of PMP22. Correlation analyses of miR-29 and PMP22 in sciatic nerves reveal an inverse relationship, both developmentally and in post-crush injury. These results identify PMP22 as a target of miRNAs and suggest that myelin gene expression by Schwann cells is regulated by miRNAs. © 2009 Wiley-Liss, Inc. [source]


Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2007
Stephanie A. Amici
Abstract Peripheral myelin protein 22 (PMP22) is a tetraspan glycoprotein whose misexpression is associated with a family of hereditary peripheral neuropathies. In a recent report, we have characterized a novel PMP22-deficient mouse model in which the first two coding exons were replaced by the lacZ reporter. To investigate further the myelin abnormalities in the absence of PMP22, sciatic nerves and dorsal root ganglion (DRG) neuron explant cultures from PMP22-deficient mice were studied at various stages of myelination. Throughout the first 3 months of postnatal development, myelin protein and ,4 integrin levels are dramatically reduced, whereas p75 and ,1 integrin remain elevated. By immunostaining, the distributions of several glial proteins, including ,4 integrin, the voltage-gated potassium channel Kv1.1, and E-cadherin, are altered. Schwann cells from PMP22-deficient mice are able to produce limited amounts of myelin in DRG explant cultures, yet the internodal segments are dramatically fewer and shorter. The comparison of PMP22-deficient mice with other PMP22 mutant models reveals that the decrease in ,4 integrin is specific to an absence of PMP22. Furthermore, whereas lysosome-associated membrane protein 1 and ubiquitin are notably up-regulated in nerves of PMP22-deficient mice, heat shock protein 70 levels remain constant or decrease compared with wild-type or PMP22 mutant samples. Together these results support a role for PMP22 in the early events of peripheral nerve myelination. Additionally, although myelin abnormalities are a commonality among PMP22 neuropathic models, the underlying subcellular mechanisms are distinct and depend on the specific genetic abnormality. © 2006 Wiley-Liss, Inc. [source]


Molecular analysis in Japanese patients with Charcot-Marie-Tooth disease: DGGE analysis for PMP22, MPZ, and Cx32/GJB1 mutations,

HUMAN MUTATION, Issue 5 2002
Chikahiko Numakura
Abstract Charcot-Marie-Tooth disease (CMT) is a heterogeneous disorder and is traditionally classified into two major types, CMT type 1 (CMT1) and CMT type 2 (CMT2). Most CMT1 patients are associated with the duplication of 17p11.2-p12 (CMT1A duplication) and small numbers of patients have mutations of the peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ), connexin 32 (Cx32/GJB1), and early growth response 2 (EGR2) genes. Some mutations of MPZ and Cx32 were also associated with the clinical CMT2 phenotype. We constructed denaturing gradient gel electrophoresis (DGGE) analysis as a screening method for PMP22, MPZ, and Cx32 mutations and studied 161 CMT patients without CMT1A duplication. We detected 27 mutations of three genes including 15 novel mutations; six of PMP22, three of MPZ, and six of Cx32. We finally identified 21 causative mutations in 22 unrelated patients and five polymorphic mutations. Eighteen of 22 patients carrying PMP22, MPZ, or Cx32 mutations presented with CMT1 and four of them with MPZ or Cx32 mutations presented with the CMT2 phenotype. DGGE analysis was sensitive for screening for those gene mutations, but causative gene mutation was not identified in many of the Japanese patients with CMT, especially with CMT1. Other candidate genes should be studied to elucidate the genetic basis of Japanese CMT patients. Hum Mutat 20:392,398, 2002. © 2002 Wiley-Liss, Inc. [source]


Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2007
Stephanie A. Amici
Abstract Peripheral myelin protein 22 (PMP22) is a tetraspan glycoprotein whose misexpression is associated with a family of hereditary peripheral neuropathies. In a recent report, we have characterized a novel PMP22-deficient mouse model in which the first two coding exons were replaced by the lacZ reporter. To investigate further the myelin abnormalities in the absence of PMP22, sciatic nerves and dorsal root ganglion (DRG) neuron explant cultures from PMP22-deficient mice were studied at various stages of myelination. Throughout the first 3 months of postnatal development, myelin protein and ,4 integrin levels are dramatically reduced, whereas p75 and ,1 integrin remain elevated. By immunostaining, the distributions of several glial proteins, including ,4 integrin, the voltage-gated potassium channel Kv1.1, and E-cadherin, are altered. Schwann cells from PMP22-deficient mice are able to produce limited amounts of myelin in DRG explant cultures, yet the internodal segments are dramatically fewer and shorter. The comparison of PMP22-deficient mice with other PMP22 mutant models reveals that the decrease in ,4 integrin is specific to an absence of PMP22. Furthermore, whereas lysosome-associated membrane protein 1 and ubiquitin are notably up-regulated in nerves of PMP22-deficient mice, heat shock protein 70 levels remain constant or decrease compared with wild-type or PMP22 mutant samples. Together these results support a role for PMP22 in the early events of peripheral nerve myelination. Additionally, although myelin abnormalities are a commonality among PMP22 neuropathic models, the underlying subcellular mechanisms are distinct and depend on the specific genetic abnormality. © 2006 Wiley-Liss, Inc. [source]


Molecular alterations resulting from frameshift mutations in peripheral myelin protein 22: Implications for neuropathy severity

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005
J.S. Johnson
Abstract Alterations in peripheral myelin protein 22 (PMP22) expression are associated with a heterogeneous group of hereditary demyelinating peripheral neuropathies. Two mutations at glycine 94, a single guanine insertion or deletion in PMP22, result in different reading frameshifts and, consequently, an extended G94fsX222 or a truncated G94fsX110 protein, respectively. Both of these autosomal dominant mutations alter the second half of PMP22 and yet are linked to clinical phenotypes with distinct severities. The G94fsX222 is associated with hereditary neuropathy with liability to pressure palsies, whereas G94fsX110 causes severe neuropathy diagnosed as Dejerine-Sottas disease or Charcot-Marie-Tooth disease type IA. To investigate the subcellular changes associated with the G94 frameshift mutations, we expressed epitope-tagged forms in primary rat Schwann cells. Biochemical and immunolabeling studies indicate that, unlike the wild-type protein, which is targeted for the plasma membrane, frameshift PMP22s are retained in the cell, prior to reaching the medial Golgi compartment. Similar to Wt-PMP22, both frameshift mutants are targeted for proteasomal degradation and accumulate in detergent-insoluble, ubiquitin-containing aggregates upon inhibition of this pathway. The extended frameshift PMP22 shows the ability to form spontaneous aggregates in the absence of proteasome inhibition. On the other hand, Schwann cells expressing the truncated protein proliferate at a significantly higher rate than Schwann cells expressing the wild-type or the extended PMP22. In summary, these results suggest that a greater potential for PMP22 aggregation is associated with a less severe phenotype, whereas dysregulation of Schwann cell proliferation is linked to severe neuropathy. © 2005 Wiley-Liss, Inc. [source]


Sex-dimorphic effects of progesterone and its reduced metabolites on gene expression of myelin proteins by rat Schwann cells

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2006
Valerio Magnaghi
Abstract Data obtained in our and other laboratories have indicated that progesterone (P) and its derivatives, dihydroprogesterone (DHP) and tetrahydroprogesterone (THP), stimulate the expression of two myelin proteins of the peripheral nervous system (PNS) [i.e., glycoprotein zero (P0) and peripheral myelin protein 22 (PMP22)]. We have now considered the effects of P and its derivatives on these and other myelin proteins [i.e., myelin-associated glycoprotein (MAG) and myelin and lymphocyte protein (MAL)] in sex-specific cultures of rat Schwann cells. Gene expression of myelin proteins was assessed by RNase protection assay. Treatment with P or DHP induced a stimulatory effect on P0 mRNA levels in male but not in female Schwann cells. In contrast, treatment with THP increased gene expression of P0 exclusively in female Schwann cells. A similar sex-difference was also evident for other myelin proteins. Indeed, PMP22 expression was stimulated by treatment with P in male cultures, whereas THP induced an increase of mRNA levels in female cultures. Moreover, MAG was stimulated by THP treatment in male cultures only, whereas MAL expression was unaffected by neuroactive steroid treatment in both male and female cultures. In conclusion, the present observations indicate that the effects of neuroactive steroids on myelin proteins are sexually dimorphic. This finding might represent an important background for sex-specific therapies of acquired and inherited peripheral neuropathies. [source]


Differential Aggregation Of The Trembler And Trembler J Mutants Of Peripheral Myelin Protein 22

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2002
AR Tobler
Mutations in the gene encoding the peripheral myelin protein 22 (PMP22), a tetraspan protein in compact peripheral myelin, are one of the causes of inherited demyelinating peripheral neuropathy. Most PMP22 mutations alter the trafficking of the PMP22 protein in Schwann cells, and this different trafficking has been proposed as the underlying mechanism of the disease. To explore this problem further, we compared the aggregation of wild-type Pmp22 with those of the two Pmp22 mutations found in Trembler (Tr) and Trembler J (TrJ) mice. All three Pmp22s can be crosslinked readily as homodimers in transfected cells. Wild-type Pmp22 also forms heterodimers with Tr and TrJ Pmp22, and these heterodimers traffic with their respective mutant Pmp22 homodimers. All three Pmp22s form complexes larger than dimers with Tr Pmp22 especially prone to aggregate into high molecular weight complexes. Despite the differences in aggregation of Tr and TO Pmp22, these two mutant Pmp22s sequester the same amount of wild-type Pmp22 in heterodimers and heterooligomers. Thus, the differences in the phenotypes of Tr and TrJ mice may depend more on the ability of the mutant protein to aggregate than on the dominant-negative effect of the mutant Pmp22 on wild-type Pmp22 trafficking. [source]


STEROID EFFECTS ON THE GENE EXPRESSION OF PERIPHERAL MYELIN PROTEINS

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002
RC Melcangi
The present article summarizes recent observations obtained in our laboratory which clearly indicate that sex steroids exert relevant effects on the peripheral nervous system. In particular, the following important points have emerged: (1) Steroids exert stimulatory actions on the synthesis of the proteins proper of the peripheral myelin (e.g., glycoprotein Po and peripheral myelin protein 22) in vivo and on the Schwann cells in culture; (2) in many cases the actions of hormonal steroids are not due to their native molecular forms but rather to their metabolites (e.g., dihydroprogesterone and tetrahydroprogesterone in the case of progesterone; dihydrotestosterone and 5 alpha-androstane-3 alpha,17 beta -diol in the case of testosterone); (3) the mechanism of action of the various steroidal molecules may involve both classical (progesterone and androgen receptors) and nonclassical steroid receptors (GABA, receptor); and finally, (4) the stimulatory action of steroid hormones on the proteins of the peripheral myelin might have clinical significance in cases in which the rebuilding of myelin is needed (e.g., aging, peripheral injury, demyelinating diseases, and iabetic neuropathy). [source]


Axonal and demyelinating forms of the MPZ Thr124Met mutation

ACTA NEUROLOGICA SCANDINAVICA, Issue 3 2003
S. Kurihara
Objective , We report on a Japanese family with Charcot,Marie,Tooth disease (CMT) with the Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene. Material and methods , Based on the clinical study, we investigated MPZ gene by direct sequence analysis and polymerase chain reaction,restriction fragment length polymorphism analysis. Results , Genotyping of four symptomatic family members showed that one family member with severe disease symptoms was homozygous, while the other three were heterozygous. The heterozygous cases were clinicopathologically determined to be the axonal type, which is characterized by late-onset and slow progression associated with Adie's pupil and deafness. The homozygous case was the demyelinating type, which showed earlier onset, rapid progression, sural nerve demyelination, and cranial nerve demyelination at autopsy. Conclusions , We suggest that axonal and demyelinating forms of CMT are not two distinct classes, but rather parts of a spectrum of genotypically related conditions, particularly with some MPZ mutations. [source]


Ultrastructural identification of peripheral myelin proteins by a pre-embedding immunogold labeling method

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2003
Marie-Hélène Canron
Abstract Ultrastructural immunolabeling of peripheral nervous system components is an important tool to study the relation between structure and function. Owing to the scarcity of certain antigens and the dense structure of the peripheral nerve, a pre-embedding technique is likely appropriate. After several investigations on procedures for pre-embedding immunolabeling, we propose a method that offers a good compromise between detection of antigenic sites and preservation of morphology at the ultrastructural level, and that is easy to use and suitable for investigations on peripheral nerve biopsies from humans. Pre-fixation by immersion in paraformaldehyde/glutaraldehyde is necessary to stabilize the ultrastructure. Then, ultrasmall gold particles with silver enhancement are advised. Antibodies against myelin protein zero and myelin basic protein were chosen for demonstration. The same technique was applied to localize a 35 kDa myelin protein. [source]