Home About us Contact | |||
Peripheral Macrophages (peripheral + macrophage)
Selected AbstractsActivation and deactivation of periventricular white matter phagocytes during postnatal mouse developmentGLIA, Issue 1 2010Mariya Hristova Abstract Brain microglia are related to peripheral macrophages but undergo a highly specific process of regional maturation and differentiation inside the brain. Here, we examined this deactivation and morphological differentiation in cerebral cortex and periventricular subcortical white matter, the main "fountain of microglia" site, during postnatal mouse development, 0,28 days after birth (P0,P28). Only macrophages in subcortical white matter but not cortical microglia exhibited strong expression of typical activation markers alpha5, alpha6, alphaM, alphaX, and beta2 integrin subunits and B7.2 at any postnatal time point studied. White matter phagocyte activation was maximal at P0, decreased linearly over P3 and P7 and disappeared at P10. P7 white matter phagocytes also expressed high levels of IGF1 and MCSF, but not TNFalpha mRNA; this expression disappeared at P14. This process of deactivation followed the presence of ingested phagocytic material but correlated only moderately with ramification, and not with the extent of TUNEL+ death in neighboring cells, their ingestion or microglial proliferation. Intravenous fluosphere labeling revealed postnatal recruitment and transformation of circulating leukocytes into meningeal and perivascular macrophages as well as into ramified cortical microglia, but bypassing the white matter areas. In conclusion, this study describes strong and selective activation of postnatally resident phagocytes in the P0,P7 subcortical white matter, roughly equivalent to mid 3rd trimester human fetal development. This presence of highly active and IGF1- and MCSF-expressing phagocytes in the neighborhood of vulnerable white matter could play an important role in the genesis of or protection against axonal damage in the fetus and premature neonate. © 2009 Wiley-Liss, Inc. [source] G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditionsGLIA, Issue 8 2007Caroline Bouchard Abstract G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators. © 2007 Wiley-Liss, Inc. [source] Differential gene expression in LPS/IFN, activated microglia and macrophages: in vitro versus in vivoJOURNAL OF NEUROCHEMISTRY, Issue 2009Christoph D. Schmid Abstract Two different macrophage populations contribute to CNS neuroinflammation: CNS-resident microglia and CNS-infiltrating peripheral macrophages. Markers distinguishing these two populations in tissue sections have not been identified. Therefore, we compared gene expression between LPS (lipopolysaccharide)/interferon (IFN),-treated microglia from neonatal mixed glial cultures and similarly treated peritoneal macrophages. Fifteen molecules were identified by quantative PCR (qPCR) as being enriched from 2-fold to 250-fold in cultured neonatal microglia when compared with peritoneal macrophages. Only three of these molecules (C1qA, Trem2, and CXCL14) were found by qPCR to be also enriched in adult microglia isolated from LPS/IFN,-injected CNS when compared with infiltrating peripheral macrophages from the same CNS. The discrepancy between the in vitro and in vivo qPCR data sets was primarily because of induced expression of the ,microglial' molecules (such as the tolerance associated transcript, Tmem176b) in CNS-infiltrating macrophages. Bioinformatic analysis of the ,19000 mRNAs detected by TOGA gene profiling confirmed that LPS/IFN,-activated microglia isolated from adult CNS displayed greater similarity in total gene expression to CNS-infiltrating macrophages than to microglia isolated from unmanipulated healthy adult CNS. In situ hybridization analysis revealed that nearly all microglia expressed high levels of C1qA, while subsets of microglia expressed Trem2 and CXCL14. Expression of C1qA and Trem2 was limited to microglia, while large numbers of GABA+ neurons expressed CXCL14. These data suggest that (i) CNS-resident microglia are heterogeneous and thus a universal microglia-specific marker may not exist; (ii) the CNS micro-environment plays significant roles in determining the phenotypes of both CNS-resident microglia and CNS-infiltrating macrophages; (iii) the CNS microenvironment may contribute to immune privilege by inducing macrophage expression of anti-inflammatory molecules. [source] In vitro induction of nitric oxide synthase in astrocytes and microglia by Trypanosoma brucei bruceiPARASITE IMMUNOLOGY, Issue 1 2000Murielle Girard In stage II human african trypanosomiasis (HAT), which is characterized by central nervous system (CNS) involvement, neurones and oligodendrocytes might be targets of dysimmune processes. Nitric oxide (NO) production by peripheral macrophages is documented in HAT. We studied the production of NO by murine astrocytes and microglia cocultured with Trypanosoma brucei(T. b.) brucei AnTat 1.9. Purified astrocytes or microglia from mouse brains were cocultured with T. b. brucei, and in some instances with interferon (IFN)-,, which is known to be released during the disease and also to be a growth factor for trypanosomes. Inducible NO synthase (iNOS) expression was studied by indirect immunofluorescence and reverse transcriptase-polymerase chain reaction. NO production was determined by measuring nitrite generation in culture. Detection of iNOS in astrocytes and microglia in the presence of T. b. brucei, was closely associated with nitrite production and was strongly enhanced by the addition of IFN-, to the culture medium. The stimulation of iNOS activity required parasite,cell contact and likely occurred at the transcriptional level. This study demonstrates the induction of iNOS in CNS-related macrophage cells in the presence of trypanosomes and its potentiation by IFN-,. [source] |