Home About us Contact | |||
Peripheral Injury (peripheral + injury)
Selected AbstractsInflammatory nerve responses in the dental pulpENDODONTIC TOPICS, Issue 1 2007INGE FRISTAD Tooth pulp has a dense innervation and a rich vascular supply to maintain homeostasis and to preserve the integrity of the tissue. Function, trauma, and antigenic challenges make teeth and supporting tissues susceptible to tissue injury and inflammation, partially due to the lack of collateral blood and nerve supply and to their low compliance. This review focuses on dental nerve functions and adaptive changes in the pulpal nerve supply following inflammation and peripheral injury. Overviews of dental innervation and its development and of the peptidergic innervation of oral tissues are presented, followed by a discussion of peripheral and central changes after local insults to teeth and peripheral nerve injuries. The functional implications of these adaptive changes are considered. Received 13 February 2009; accepted 3 September 2009. [source] Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Lars Jørgen Rygh Abstract Long-term potentiation (LTP), a use dependent long-lasting modification of synaptic strength, was first discovered in the hippocampus and later shown to occur in sensory areas of the spinal cord. Here we demonstrate that spinal LTP requires the activation of a subset of superficial spinal dorsal horn neurons expressing the neurokinin-1 receptor (NK1-R) that have previously been shown to mediate certain forms of hyperalgesia. These neurons participate in local spinal sensory processing, but are also the origin of a spino-bulbo-spinal loop driving a 5-hydroxytryptamine 3 receptor (5HT3-R)- mediated descending facilitation of spinal pain processing. Using a saporin-substance P conjugate to produce site-specific neuronal ablation, we demonstrate that NK1-R expressing cells in the superficial dorsal horn are crucial for the generation of LTP-like changes in neuronal excitability in deep dorsal horn neurons and this is modulated by descending 5HT3-R-mediated facilitatory controls. Hippocampal LTP is associated with early expression of the immediate-early gene zif268 and knockout of the gene leads to deficits in long-term LTP and learning and memory. We found that spinal LTP is also correlated with increased neuronal expression of zif268 in the superficial dorsal horn and that zif268 antisense treatment resulted in deficits in the long-term maintenance of inflammatory hyperalgesia. Our results support the suggestion that the generation of LTP in dorsal horn neurons following peripheral injury may be one mechanism whereby acute pain can be transformed into a long-term pain state. [source] Substance P initiates NFAT-dependent gene expression in spinal neuronsJOURNAL OF NEUROCHEMISTRY, Issue 2 2006V. S. Seybold Abstract Persistent hyperalgesia is associated with increased expression of proteins that contribute to enhanced excitability of spinal neurons, however, little is known about how expression of these proteins is regulated. We tested the hypothesis that Substance P stimulation of neurokinin receptors on spinal neurons activates the transcription factor nuclear factor of activated T cells isoform 4 (NFATc4). The occurrence of NFATc4 in spinal cord was demonstrated with RT-PCR and immunocytochemistry. Substance P activated NFAT-dependent gene transcription in primary cultures of neonatal rat spinal cord transiently transfected with a luciferase DNA reporter construct. The effect of Substance P was mediated by neuronal neurokinin-1 receptors that coupled to activation of protein kinase C, l -type voltage-dependent calcium channels, and calcineurin. Interestingly, Substance P had no effect on cyclic AMP response element (CRE)-dependent gene expression. Conversely, calcitonin gene-related peptide, which activated CRE-dependent gene expression, did not activate NFAT signaling. These data provide evidence that peptides released from primary afferent neurons regulate discrete patterns of gene expression in spinal neurons. Because the release of Substance P and calcitonin gene-related peptide from primary afferent neurons is increased following peripheral injury, these peptides may differentially regulate the expression of proteins that underlie persistent hyperalgesia. [source] STEROID EFFECTS ON THE GENE EXPRESSION OF PERIPHERAL MYELIN PROTEINSJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002RC Melcangi The present article summarizes recent observations obtained in our laboratory which clearly indicate that sex steroids exert relevant effects on the peripheral nervous system. In particular, the following important points have emerged: (1) Steroids exert stimulatory actions on the synthesis of the proteins proper of the peripheral myelin (e.g., glycoprotein Po and peripheral myelin protein 22) in vivo and on the Schwann cells in culture; (2) in many cases the actions of hormonal steroids are not due to their native molecular forms but rather to their metabolites (e.g., dihydroprogesterone and tetrahydroprogesterone in the case of progesterone; dihydrotestosterone and 5 alpha-androstane-3 alpha,17 beta -diol in the case of testosterone); (3) the mechanism of action of the various steroidal molecules may involve both classical (progesterone and androgen receptors) and nonclassical steroid receptors (GABA, receptor); and finally, (4) the stimulatory action of steroid hormones on the proteins of the peripheral myelin might have clinical significance in cases in which the rebuilding of myelin is needed (e.g., aging, peripheral injury, demyelinating diseases, and iabetic neuropathy). [source] Mental rotation of body parts and sensory temporal discrimination in fixed dystonia,MOVEMENT DISORDERS, Issue 8 2010Petra Katschnig MD Abstract Fixed dystonia is an uncommon but severely disabling condition typically affecting young women following a minor peripheral injury. There is no evidence of any structural lesions of the central nervous system nor any clear peripheral nerve or root damage. Electrophysiological techniques such as short intracortical inhibition, cortical silent period and a plasticity inducing protocol have revealed similarities but also differences compared to classical mobile dystonia. To further explore the pathophysiology of fixed dystonia we compared mental rotation of body parts and sensory temporal discrimination in 11 patients with fixed dystonia, 11 patients with classical mobile dystonia and 10 healthy controls. In the mental rotation task subjects were presented with realistic photos of left or right hands, feet and the head of a young women with a black patch covering the left or the right eye in six different orientations. Subjects had to verbally report the laterality of the presented stimuli. To assess sensory temporal discrimination subjects were asked to discriminate whether pairs of visual, tactile (electrical), or visuo-tactile stimuli were simultaneous or sequential (temporal discrimination threshold) and in the latter case which stimulus preceded the other (temporal order judgement). In accordance with previous studies patients with mobile dystonia were abnormal in mental rotation and temporal discrimination, whereas patients with fixed dystonia were only impaired in mental rotation. Possible explanations for this deficit may include the influence of the abnormal body posture itself, a shared predisposing pathophysiology for mobile and fixed dystonia, or a body image disturbance. These findings add information to the developing pathophysiological picture of fixed dystonia. © 2010 Movement Disorder Society [source] |