Peri-implant Bone (peri-implant + bone)

Distribution by Scientific Domains

Terms modified by Peri-implant Bone

  • peri-implant bone loss

  • Selected Abstracts


    Alveolar ridge augmentation using implants coated with recombinant human growth/differentiation factor-5: histologic observations

    JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 8 2010
    Giuseppe Polimeni
    Polimeni G, Wikesjö UME, Susin C, Qahash M, Shanaman RH, Prasad HS, Rohrer MD, Hall J. Alveolar ridge augmentation using implants coated with recombinant human growth/differentiation factor-5: histologic observations. J Clin Periodontol 2010; 37: 759-768 doi: 10.1111/j.1600-051X.2010.01579.x. Abstract Objectives: In vitro and in vivo preclinical studies suggest that growth/differentiation factor-5 (GDF-5) may induce local bone formation. The objective of this study was to evaluate the potential of recombinant human GDF-5 (rhGDF-5) coated onto an oral implant with a purpose-designed titanium porous oxide surface to stimulate local bone formation including osseointegration and vertical augmentation of the alveolar ridge. Materials and Methods: Bilateral, critical-size, 5 mm, supraalveolar peri-implant defects were created in 12 young adult Hound Labrador mongrel dogs. Six animals received implants coated with 30 or 60 ,g rhGDF-5, and six animals received implants coated with 120 ,g rhGDF-5 or left uncoated (control). Treatments were alternated between jaw quadrants. The mucoperiosteal flaps were advanced, adapted, and sutured to submerge the implants for primary intention healing. The animals received fluorescent bone markers at weeks 3, 4, 7, and 8 post-surgery when they were euthanized for histologic evaluation. Results: The clinical examination showed no noteworthy differences between implants coated with rhGDF-5. The cover screw and implant body were visible/palpable through the alveolar mucosa for both rhGDF-5-coated and control implants. There was a small increase in induced bone height for implants coated with rhGDF-5 compared with the control, induced bone height averaging (±SD) 1.6±0.6 mm for implants coated with 120 ,g rhGDF-5 versus 1.2±0.5, 1.2±0.6, and 0.6±0.2 mm for implants coated with 60 ,g rhGDF-5, 30 ,g rhGDF-5, or left uncoated, respectively (p<0.05). Bone formation was predominant at the lingual aspect of the implants. Narrow yellow and orange fluorescent markers throughout the newly formed bone indicate relatively slow new bone formation within 3,4 weeks. Implants coated with rhGDF-5 displayed limited peri-implant bone remodelling in the resident bone; the 120 ,g dose exhibiting more advanced remodelling than the 60 and 30 ,g doses. All treatment groups exhibited clinically relevant osseointegration. Conclusions: rhGDF-5-coated oral implants display a dose-dependent osteoinductive and/or osteoconductive effect, bone formation apparently benefiting from local factors. Application of rhGDF-5 appears to be safe as it is associated with limited, if any, adverse effects. [source]


    Biomechanical effects of double or wide implants for single molar replacement in the posterior mandibular region

    JOURNAL OF ORAL REHABILITATION, Issue 10 2000
    Y. Sato
    Double implants have been thought to have biomechanical advantages for single molar replacement. To evaluate the effectiveness of double implants versus a wide implant, the vertical forces and torque on each implant were calculated by three-dimensional geometric analysis. Buccal load (100 N) perpendicular to cuspal inclination (20°) was applied at the occlusal surface of the superstructure. The three kinds of load points (A, B, C) were 1·5, 3·5, and 5·5 mm from the mesial contact point, respectively. Three implants were compared: mesial and distal double implants (, 3·3 mm), and a wide implant (, 5 mm). The wide implant showed torque around the long axis (1·8,15·0 N · cm) whereas double implants had no torque. On the other hand, the vertical forces on the mesial double implant were both smaller (60%: loaded at point C) and larger (140%: loaded at point A) than the wide implant. Given the smaller surface area of the mesial double implant, this large force may generate much higher stress in the peri-implant bone. These results suggest that the biomechanical advantage of double implants for single molar replacement is questionable when the occlusal force is loaded at the occlusal surface near the contact point. [source]


    Anchorage of Titanium Implants with Different Surface Characteristics: An Experimental Study in Rabbits

    CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 3 2000
    Klaus Gotfredsen DDS
    ABSTRACT Purpose: To compare the anchorage of titanium implants with different surface roughness and topography and to examine histologically the peri-implant bone after implant removal. Materials and Methods: Screw implants with five different surface topographies were examined: (1) turned ("machined"), (2) TiO2 -blasted with particles of grain size 10 to 53 ,m; (3) TiO2 -blasted, grain size 63 to 90 ,m; (4) TiO2 -blasted, grain size 90 to 125 ,m; (5) titanium plasma-sprayed (TPS). The surface topography was determined by the use of an optical instrument. Twelve rabbits, divided into two groups, had a total of 120 implants inserted in the tibiae. One implant from each of the five surface categories was placed within the left tibia of each rabbit. By a second operation, implants were installed in the right tibia, after 2 weeks in group A and after 3 weeks in group B. Fluorochrome labeling was performed after 1 and 3 weeks. Removal torque (RMT) tests of the implants were performed 4 weeks after the second surgery in group A and 9 weeks after the second surgery in group B. Thus, in group A, two healing groups were created, representing 4 and 6 weeks, respectively. The corresponding healing groups in group B were 9 and 12 weeks. The tibiae were removed, and each implant site was dissected, fixed, and embedded in light-curing resin. Ground sections were made, and the peri-implant bone was analyzed using fluorescence and light microscopy. Results: The turned implants had the lowest Sa and Sy values, whereas the highest scores were recorded for the TPS implants. The corresponding Sa and Sy values for the TiO2 -blasted implants were higher when a larger size of grain particles had been used for blasting. At all four observation intervals, the TPS implants had the highest and the turned implants the lowest RMT scores. The differences between the various TiO2 -blasted implants were, in general, small, but the screws with the largest Sa value had higher RMT scores at 6, 9, and 12 weeks than implants with lower Sa values. The histologic analysis of the sections representing 6, 9, and 12 weeks revealed that fractures or ruptures were present in the marginal, cortical peri-implant bone. In such sections representing the TPS and TiO2 -blasted implant categories, ruptures were frequently found in the zone between the old bone and the newly formed bone, as well as within the newly formed bone. Conclusions: The present study demonstrated that a clear relation exists between surface roughness, described in Sa values, and implant anchorage assessed by RMT measurements. The anchorage appeared to increase with the maturation of bone tissue during healing. [source]


    Immediate non-occlusal vs. early loading of dental implants in partially edentulous patients: a multicentre randomized clinical trial.

    CLINICAL ORAL IMPLANTS RESEARCH, Issue 6 2008
    Peri-implant bone, soft-tissue levels
    Abstract Objectives: To compare peri-implant bone and soft-tissue levels of immediately non-occlusally loaded vs. non-submerged early loaded implants in partially edentulous patients up to 14 months after placement. Material and methods: Fifty-two patients were randomized in five Italian private practices: 25 in the immediately loaded group and 27 in the early loaded group. To be immediately loaded, single implants had to be inserted with a torque of ,30 N cm, and splinted implants with a torque of ,20 N cm. Immediately loaded implants were provided with non-occluding temporary restorations within 48 h. After 2 months, the provisional restorations were placed in full occlusion. Implants were early loaded after 2 months. Final restorations were provided 8 months after placement. Blinded assessors evaluated peri-implant bone and soft-tissue levels. Results: Fifty-two implants were immediately loaded and 52 were early loaded. No drop-out occurred. One single immediately loaded implant failed 2 months after placement. Both groups gradually lost peri-implant bone in a highly statistically significant manner at 2, 8, and 14 months. After 14 months, patients of both groups lost an average of 1.1 mm of peri-implant bone. There were no statistically significant differences between the two loading strategies for peri-implant bone and soft-tissue level changes (P>0.05). After 14 months, the position of the soft tissues did not change significantly from baseline (delivery of the final restorations 8 months after placement). Conclusions: There were no statistically or clinically significant differences between immediate and early loading of dental implants with regard to peri-implant bone and soft-tissue levels as evaluated in the present study. [source]


    Influence of forces on peri-implant bone

    CLINICAL ORAL IMPLANTS RESEARCH, Issue S2 2006
    Flemming Isidor
    Abstract: Occlusal forces affect an oral implant and the surrounding bone. According to bone physiology theories, bones carrying mechanical loads adapt their strength to the load applied on it by bone modeling/remodeling. This also applies to bone surrounding an oral implant. The response to an increased mechanical stress below a certain threshold will be a strengthening of the bone by increasing the bone density or apposition of bone. On the other hand, fatigue micro-damage resulting in bone resorption may be the result of mechanical stress beyond this threshold. In the present paper literature dealing with the relationship between forces on oral implants and the surrounding bone is reviewed. Randomized controlled as well as prospective cohorts studies were not found. Although the results are conflicting, animal experimental studies have shown that occlusal load might result in marginal bone loss around oral implants or complete loss of osseointegration. In clinical studies an association between the loading conditions and marginal bone loss around oral implants or complete loss of osseointegration has been stated, but a causative relationship has not been shown. [source]


    Fast element mapping of titanium wear around implants of different surface structures

    CLINICAL ORAL IMPLANTS RESEARCH, Issue 2 2006
    Ulrich Meyer
    Abstract: The effect of unintended titanium release around oral implants remains a biological concern. The current study was undertaken to evaluate a new detection system of element mapping in biological probes. A new scanning electron microscopy-energy dispersive spectroscopy detection method was used to map the features of titanium contamination in peri-implant bone around implants with different surface structures. The amount of titanium wear was highest adjacent to titanium-plasma-sprayed surfaces, followed by sandblastered large grid acid-etched and smooth surfaces. A high sensitivity of titanium detection over large areas of bone tissue was observed. A high spatial resolution of titanium wear particles (20 nm) could be reached and correlated to the ultrastructural morphological features of peri-implant tissue. Cells adjacent to titanium wear revealed no signs of morphological alterations on a nanoscale level at early periods of implant/bone interaction. The new technique may serve as a fast and effective tool to evaluate titanium release effects in biological probes. [source]