Perennial Herb (perennial + herb)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Composition and antimicrobial activity of the volatile oil of Artemisia kopetdaghensis Krasch., M.Pop.

FLAVOUR AND FRAGRANCE JOURNAL, Issue 6 2006
& Linecz ex Poljak from Iran
Abstract Artemisia kopetdaghensis Krasch., M.Pop. & Linecz ex Poljak (Asteraceae) is a common perennial herb growing wild in north-eastern parts of Iran. The essential oil of A. kopetdaghensis was isolated by hydrodistillation in 2.14% (v/w) yield. The chemical composition of the essential oil was examined by GC and GC,MS. Thirty-three compounds were identified, representing 86.8% of the total oil. The major constituents were methyleugenol (24.4%), geranial (13.6%), davanone (11.1%), camphor (9.8%) and neral (7.4%). Minimum inhibitory concentration was determined, using the agar dilution method, against eight bacteria and two fungal strains. The essential oil showed a moderate antimicrobial activity. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Environmentally induced variation in floral traits affects the mating system in Datura wrightii

FUNCTIONAL ECOLOGY, Issue 1 2002
E. Elle
Summary 1If pollination is unpredictable, selection may favour the production of selfed seeds in the absence of pollen vectors, even in plant species with obvious adaptations for outcrossing. Pollination may be less predictable for plants growing in certain environments if environmental factors affect the floral phenotype. Through effects on flower morphology and the floral display, the environment may affect the outcrossing rate. 2We manipulated two environmental factors, water availability and exposure to insect herbivores, in a common-garden experiment using a perennial herb, Datura wrightii. We measured herkogamy (the separation of anthers and stigmas within flowers), total flower length, and flower number, and used a single-gene trichome dimorphism as a marker to determine per-plant outcrossing rates. 3The large amount of variation in herkogamy was affected by trichome type, irrigation and herbivory. In addition, watered plants had longer corollas, and plants attacked by herbivores had fewer open flowers. Thus environmental factors affect floral phenotype. 4However, irrigation and herbivory did not directly affect outcrossing rate. There were indirect effects of these treatments on outcrossing because plants with increased herkogamy and fewer open flowers had higher outcrossing rates. 5, A greenhouse experiment showed that autonomous selfing is more likely when herkogamy is reduced, and can occur both as the flower opens and when the corolla is shed. 6, These experiments are among the first to show that within-population variation in the mating system can be due to environmentally induced variation in floral traits. [source]


Endemic species and ecosystem sensitivity to climate change in Namibia

GLOBAL CHANGE BIOLOGY, Issue 5 2006
WILFRIED THUILLER
Abstract We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ,2050 and ,2080. We used both niche-based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life-form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life-formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north-eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2, currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ,2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ,2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region. [source]


Spatio-temporal variation in fruit production and seed predation in a perennial herb influenced by habitat quality and population size

JOURNAL OF ECOLOGY, Issue 2 2008
Jon Ågren
Summary 1In patchily distributed plant species, seed production is likely to be influenced both by local abiotic factors affecting plant size and conditions for fruit maturation, and by population characteristics affecting the intensity of interactions with mutualists and antagonists. However, the relative importance of these effects is poorly known. 2We used multiple regression and path models to examine the importance of abiotic factors (sun exposure, soil depth) and population characteristics (size, density and connectivity) for variation in flower and fruit production and intensity of seed predation among 39 populations of the long-lived herb Vincetoxicum hirundinaria in three consecutive years. In addition, we manipulated water availability in a field experiment and recorded short-term and long-term effects on fruit output, and conducted a supplemental hand-pollination experiment. 3Flower production varied little, while fruit initiation, fruit abortion and fruit predation varied considerably among years. Sun exposure and soil depth affected fruit production per plant indirectly and positively through their effects on flower number. Population density affected fruit production negatively through its effect on flower number. Both fruit initiation and the proportion of fruits attacked by the tephritid fly Euphranta connexa were related positively to population size. 4The number of full-size fruits per plant was related positively to sun exposure and population size in two years each, and related negatively to population density in one year. However, because of seed predation, the number of intact mature fruits was related significantly to population characteristics in only one of three years. 5The field experiments showed that both shortage of water and insufficient pollination may limit fruit set in V. hirundinaria. 6Synthesis. These results demonstrate that the relative importance of local abiotic conditions and population characteristics may vary considerably along the chain of events from flower formation to intact fruit, and also among years. They further show that, at least in species with a naturally patchy distribution, connectivity may be relatively unimportant for variation in reproductive output compared to effects of habitat quality, population size and density. [source]


Reduced reproductive success in small populations of the self-incompatible Primula vulgaris

JOURNAL OF ECOLOGY, Issue 1 2004
Rein Brys
Summary 1Habitat fragmentation and the resulting decline in population size can affect biotic interactions and reproductive success of plant species. We investigated the impact of habitat type, population size, morph type and frequency, plant density, floral display and predation on different reproductive components in 16 populations of the distylous self-incompatible perennial herb, Primula vulgaris , a rare, declining species in Belgium. 2Although habitat type accounted for significant variation in population size, we did not find any relation between habitat type and either reproductive and vegetative characteristics. Population size, however, strongly affected reproductive success, such that plants in small populations produced significantly fewer fruits per plant and seeds per fruit, and therefore fewer seeds per plant. 3No significant difference was found between morph types for any reproductive characteristic, nor an interaction with population size. However, when morph frequency was strongly biased (, 1 : 3), the proportion of flowers setting fruit and the number of seeds per fruit were significantly lower in individuals of the common morph type. 4Within populations, individual plants varied tremendously in size and floral display. Total number of fruits per plant significantly increased with floral display, but the highest fruit set per flower was found at intermediate flower number. 5The proportion of fruit suffering pre-dispersal predation per plant significantly increased with floral display, but this did not offset the potential fitness gains of producing a large display. Furthermore, the absolute number of predated fruits per plant was significantly and positively affected by the interaction of the total number of fruits per plant and the density of the population. [source]


Effects of Light on the Growth and Clonal Reproduction of Ligularia virgaurea

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2008
Man-Tang Wang
Abstract Ligularia virgaurea is a perennial herb that is widely distributed in the alpine meadow on the eastern Qinghai-Tibet plateau. We investigated the patterns of growth and reproduction of L. virgaurea under two contrasting levels of light conditions for two continuous growing seasons. Our results showed that the light effects on the maximum relative growth rate, the shoot weight ratio and the root weight ratio differed between the two growing seasons. L. virgaurea reproduced initially through rhizome in the second growing season, rather than sexual reproduction. The proportion of genets with clonal reproduction decreased under shaded conditions. A minimum genet size should be attained for clonal reproduction to begin under the shaded conditions. There was a positive linear relationship between clonal reproduction and genet size. Light level affected the allocation of total biomass to clonal structures, with less allocation under the full natural irradiance than under the shaded conditions. There seemed to be a trade-off between vegetative growth and clonal reproduction under the full natural irradiance, in terms of smaller relative growth rates of genets with clonal reproduction than those without clonal reproduction. L. virgaurea emphasized clonal reproduction under the full natural irradiance, while the plant emphasized vegetative growth under the shaded conditions. [source]


Effects of disturbance intensity and frequency on early old-field succession

JOURNAL OF VEGETATION SCIENCE, Issue 5 2001
B. Collins
Radford et al. (1968) Abstract. Early old-field succession provides a model system for examining vegetation response to disturbance frequency and intensity within a manageable time scale. Disturbance frequency and intensity can interact with colonization and competition to influence relative abundance of earlier and later successional species and determine, respectively, how often and how far succession can be reset. We tested the joint effects of disturbance frequency and intensity on vegetation response (species richness, abundance, canopy structure) during the first six years of succession by clipping the dominant species (D) or all species (T) in spring and fall of each year (S), once per year in summer (Y1), each two years in summer (Y2), or each four years in summer (Y4). Vegetation response reflected disturbance effects on expansion of a later monospecific dominant perennial herb, Solidago altissima, and persistence of the early, richer flora of annuals. A more abundant and taller top Solidago canopy developed on plots clipped each 2 yr or less frequently. Plots clipped yearly or seasonally were richer, but had less abundant, shorter, and differently stratified canopy. Disturbance mediated the relative abundance of early and later successional species; however, frequency and intensity effects were not completely congruent. Persistence of a richer early successional flora increased through the most frequent disturbance (S), and was magnified by disturbance intensity. Disturbance as extreme as clipping all vegetation twice yearly did not cause a drop in species richness, but maintained the early successional community over the first six years of succession. We conclude that clipping disturbance influenced the rate of succession, but the early community could rebound through the range of disturbance frequency and intensity tested. [source]


Presence of Lythrum salicaria enhances the bodyguard effects of the parasitoid Asecodes mento for Filipendula ulmaria

OIKOS, Issue 3 2007
Johan A. Stenberg
This paper reports significant effects of a co-occurring plant species (Lythrum salicaria, Lythraceae) on the reproductive success of the perennial herb Filipendula ulmaria (Rosaceae). We studied 15 Filipendula populations in the Skeppsvik Archipelago; seven of which were monospecific and eight mixed with Lythrum. All the Filipendula populations studied harbored the chrysomelid beetle Galerucella tenella, and in 2005 seed set was strongly negatively correlated with the percentage leaf area consumed. Moreover, data from 2004 showed that 25,100% of the G. tenella larvae were parasitized by the hymenopteran parasitoid Asecodes mento, and we found a strong cascading top-down effect of parasitism in 2004 on Filipendula seed set in 2005. In 2004, parasitism (at the population level) was negatively correlated with percentage leaf area consumed and positively correlated with seed set in 2005. The parasitoid Asecodes also parasitized G. calmariensis, which is monophagous on Lythrum. Mixed populations of Filipendula and Lythrum supported higher densities of their shared ,bodyguard'Asecodes. Further, Y-tube bioassays showed that floriferous Filipendula attracted more than twice as many gravid Asecodes females as floriferous Lythrum. Taken together, these findings suggest that coexistence of the two plants results in ,associational resistance' for Filipendula and ,associational susceptibility' for Lythrum. This scenario was supported for Filipendula since, for this species, we found lower leaf consumption followed by higher seed production in mixed than in monospecific populations. Considered together, our results show that bodyguards may increase the reproductive fitness of a perennial herb, and that the strength of the cascading ,bodyguard' effect can be strongly influenced by co-occurring plants through ,apparent competition'. This is the first paper to demonstrate that, in the wild, plant species may use odors to compete for ,bodyguards', thereby causing asymmetrical ,apparent competition' between the herbivores involved. Our data emphasize the need to consider community factors in studies of trophic interactions. [source]


Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae)

PLANT BIOLOGY, Issue 3 2010
X. Wu
Abstract Distyly, floral polymorphism frequently associated with reciprocal herkogamy, self- and intramorph incompatibility and secondary dimorphism, constitutes an important sexual system in the Rubiaceae. Here we report an unusual kind of distyly associated with self- and/or intramorph compatibility in a perennial herb, Hedyotis acutangula. Floral morphology, ancillary dimorphisms and compatibility of the two morphs were studied. H. acutangula did not exhibit precise reciprocal herkogamy, but this did not affect the equality of floral morphs in the population, as usually found in distylous plants. Both pin and thrum pollen retained relatively high viability for 8 h. The pollen to ovule ratio was 72.5 in pin flowers and 54.4 in thrum flowers. Pistils of pin flowers remained receptive for longer than those of thrum flowers. No apparent difference in the germination rate of pin and thrum pollen grains was observed when cultured in vitro, although growth of thrum pollen tubes was much faster than that of pin pollen tubes. Artificial pollination revealed that pollen tube growth in legitimate intermorph crosses was faster than in either intramorph crosses or self-pollination, suggesting the occurrence of cryptic self-incompatibility in this species. Cryptic self-incompatibility functioned differently in the two morphs, with pollen tube growth rates after legitimate and illegitimate pollination much more highly differentiated in pin flowers than in thrum flowers. No fruit was produced in emasculated netted flowers, suggesting the absence of apomixis. Our results indicate that H. acutangula is distylous, with a cryptic self-incompatibility breeding system. [source]


Differences in the structure, growth and survival of Parasenecio yatabei ramets with contrasting water relations on the slope of a stream bank

PLANT SPECIES BIOLOGY, Issue 2 2009
HAJIME TOMIMATSU
Abstract Parasenecio yatabei (Asteraceae), a summer-green perennial herb, is widely distributed on sloping mountain stream banks in cool-temperate zone forests of Japan. We investigated the growth pattern, leaf longevity and leaf water relations of vegetatively independent plants (ramets) growing in two contrasting soil water conditions, that is, upper and lower stream banks (U ramets and L ramets, respectively). The objective of the present study was to clarify the physiological and morphological responses of the ramets to soil water conditions. Dry matter allocation to subterranean parts was higher in U ramets than in L ramets. The U ramet leaves survived for approximately 2 months longer than L ramet leaves. The ratio of subterranean part to aerial part dry matter was greater in U ramets than L ramets. Leaf mass per leaf area (LMA) tended to be greater in U ramets than L ramets throughout the growing season. The leaf bulk modulus of elasticity at full hydration was significantly higher in U ramets. Thus, ramet growth patterns and morphological traits varied with changing soil water conditions. The greater longevity of U ramet leaves may play a role in compensating for the reduced annual net carbon gain caused by lower photosynthetic activity. U ramets growing in environments with less water availability achieved high water-use efficiency by a high passive water absorption capacity via a progressed root system and high productivity via longer leaf longevity with higher LMA and elasticity. Therefore, P. yatabei growing along mountain streams could have the ability to colonize the upper bank through higher survivorship based on these traits. [source]


Demography and reproductive strategies of a polycarpic perennial, Trillium apetalon (Trilliaceae)

PLANT SPECIES BIOLOGY, Issue 3 2001
MASASHI OHARA
Abstract To investigate the connection between demographic strategies and reproductive strategies of a polycarpic perennial herb, Trillium apetalon Makino, we conducted three studies. First, we monitored the fate of individuals and the flowering behavior of T. apetalon for 12 years and used a transition matrix model to analyze the demography of the population. The analysis revealed that it takes a long time for individuals to go through one-leaf stage in juveniles. Elasticity analysis showed that the survival of flowering individuals was a decisive factor in the dynamics of the population. Furthermore, we found that the average remaining lifetime of flowering individuals was high relative to the other three stages. Second, to elucidate the demographic consequences of organ preformation, we investigated the development of flower buds for future years. We observed three to six flower buds per rhizome, suggesting that flower buds for the next 3,6 years were ready in advance in this plant. Third, the results of breeding experiments clarified that although this species appears to have a substantial capacity for both inbreeding and outbreeding, inbreeding plays an important role in seed production, and that crossing experiments (direct cross-pollination and self pollination) yielded similar seed-ovule ratios to those obtained from open-pollinated individuals. Our three studies suggest that the adult survival and continuous flowering strategies of T. apetalon obtained from demographic analysis are closely interlinked with breeding systems and preformation of flower buds. [source]


Variations in size structure, growth and reproduction in Japanese plantain (Plantago asiatica L.) between exposed and shaded populations

PLANT SPECIES BIOLOGY, Issue 1 2001
Tsuyoshi Kobayashi
Abstract Plantago asiatica is a perennial herb that is distributed over a wide range of east Eurasia. The population structure, growth and reproduction in exposed (E-) and shaded (S-) populations of P. asiatica were examined in the Kanto District of eastern Japan. In both populations, the plant size structure showed a bimodal distribution during spring to early summer, in which the two modes corresponded to smaller seedlings and larger overwintered plants, respectively. In autumn, this distribution became unimodal due to seedling growth. However, this change occurred later in the S-population because of suppressed growth in the seedlings. In the S-population, flowering also began later in the growing season and the threshold plant size for flowering was larger than that of the E-population. Biomass allocation to the rhizomes was greater in autumn in the reproductive plants of the S-population. Growth and biomass allocation in plants grown from seeds collected from each population were compared under phytotron conditions. Near a saturated photon flux density, E-population plants had a higher relative growth rate than S-population plants. Therefore, E-population plants should allocate resources to reproductive organs sooner. Shaded population plants were not vigorous in their growth and reproduction. Seed size (dry weight per grain) was significantly greater in the S-population than in the E-population, both in the field and under phytotron conditions. These results suggest that ecotypic differentiation in life-history strategies, which is mainly due to light availability, occurs among local P. asiatica populations. The effects of severe trampling on early reproduction in the E-population are also discussed. [source]


Restoration of a Mediterranean Postfire Shrubland: Plant Functional Responses to Organic Soil Amendment

RESTORATION ECOLOGY, Issue 5 2010
Marie Larchevêque
We investigated the potential of plant functional responses to speed up restoration in a postfire ecosystem. The patterns of change in plant nutrient uptake and water potential after compost amendment were monitored for 2 years in a 7-year-old postfire shrubland in southeastern France. We studied four different stress-tolerant species with contrasting life traits: three shrub species and a perennial herb. Three treatments were applied: control, 50 and 100 Mg/ha of fresh cocomposted sewage sludge and green waste. In both compost treatments, concentrations of all the macronutrients increased. The amendment improved N and cation nutrition, but the positive effect of compost on plant nutrient status was most apparent on leaf P concentrations, indicating that P was a limiting nutrient in this shrubland. Compost had no significant short-term effect on trace metal concentrations in plants. The plant nutrition response of different species to the compost varied; the nutritional status of Brachypodium retusum and Cistus albidus improved the most, whereas that of Quercus coccifera and Ulex parviflorus improved the least. Woody species exhibited no increase in N stocks. Phosphorus accumulation was also about three times higher in plots amended at 50 Mg/ha than in control plots for B. retusum and C. albidus. The severe summer drought of 2003 altered the compost effect. Contrary to our expectations, plants on amended plots did not exhibit a better water status in summer: the effect of the summer drought had a greater effect on water status than did the compost treatment. [source]


Effects of invasion of fire-free arid shrublands by a fire-promoting invasive alien grass (Pennisetum setaceum) in South Africa

AUSTRAL ECOLOGY, Issue 8 2009
S. J. RAHLAO
Abstract Arid shrublands in the Karoo (South Africa) seldom accumulate sufficient combustible fuel to support fire. However, as a result of invasion by an alien perennial grass (Pennisetum setaceum), they could become flammable. This paper reports on an experiment to assess the effects of fire following invasion by P. setaceum. We established 10 plots (5 × 10 m) separated by 2.5 m, and added grass fuel to five plots (5 and 10 tons ha,1 to alternate halves of the plot) leaving the remaining five plots as interspersed controls. Plots with fuel added were burnt, and fire behaviour was measured during the burns. Rates of fire spread were generally low (0.01,0.07 m s,1) and did not differ significantly between burn treatments. Mean fireline intensities were higher in the high compared with the low fuel treatments (894 and 427 kW m,1, respectively). We recorded plant species and their cover before and after burning on each of the plots. After 15 months of follow-up monitoring in the burn plots, only two species, the dwarf shrub (Tripteris sinuata) and the perennial herb (Gazania krebsiana) resprouted. Most individuals of other species were killed and did not reseed during the 15-month study. The mass of added fuel load (high or low) did not influence vegetation recovery rates after fire. Should future invasions by P. setaceum lead to similar fuel loads in these shrublands, inevitable fires could change the vegetation and may favour spread of the flammable grass. Our results have important implications for predicting the effects of invasive alien plants (especially grasses) on fire-free ecosystems elsewhere. The predicted impacts of fire may alter species composition, ultimately affecting core natural resources that support the Karoo economy. [source]


Seed ecology of a Mediterranean perennial herb with an exceptionally extended flowering and fruiting season

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2003
F. XAVIER PICÓ
Lobularia maritima is a Mediterranean short-lived herb with a flowering and fruiting season that lasts for ten months. Previous studies have shown that recruitment in periods other than autumn of the flowering season has few demographic implications; that is contributes little to the population growth rate. Since environmental conditions in periods other than autumn would allow recruitment, we examined to what extent the seed ecology of L. maritima accounts for recruitment shortage for the greater part of the year. To this end, we studied the effects of selfing and outcrossing on seed production and germination, within- and between-year variation in seed mass and germination, seed characteristics in the soil seed bank throughout the year, and the effect of temperature as a factor controlling seed germination. Results indicate that selfing does not decrease recruitment, and thus the observed changes in visitation rate and pollinator composition throughout the year cannot account for differences in recruitment. Germinability decreases throughout the year, suggesting a possible cost in reproduction associated with extended flowering. L. maritima has a transient seed bank whose seeds also experience a decrease in their germination throughout the year. Finally, temperature affects seed germination patterns, indicating the existence of quiescence mechanisms that prevent germination in the months prior to the summer drought. Overall, the results obtained support and, at least partly, explain the recruitment patterns of L. maritima observed in the field. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 142, 273,280. [source]


Molecular phylogenetic analysis of Leibnitzia Cass. (Asteraceae: Mutisieae: Gerbera -complex), an Asian,North American disjunct genus

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 3 2010
Kristen E. BAIRD
Abstract Leibnitzia comprises six species of perennial herbs that are adapted to high elevation conditions and is one of only two Asteraceae genera known to have an exclusively disjunct distribution spanning central to eastern Asia and North America. Molecular phylogenetic analysis of Leibnitzia and other Gerbera -complex members indicates that Leibnitzia is monophyletic, which is in contrast with our expectation that the American Leibnitzia species L. lyrata and L. occimadrensis would be more closely related to another American member of the Gerbera -complex, namely Chaptalia. Ancestral area reconstructions show that the historical biogeography of the Gerbera -complex mirrors that of the entire Asteraceae, with early diverging lineages located in South America that were followed by transfers to Africa and Eurasia and, most recently, to North America. Intercontinental transfer of Leibnitzia appears to have been directed from Asia to North America. Independent calibrations of nuclear (ribosomal DNA internal transcribed spacer region) and chloroplast (trnL,rpl32 intron) DNA sequence data using relaxed clock methods and either mean rate or fossil-based priors unanimously support Miocene and younger divergence times for Gerbera -complex taxa. The ages are not consistent with most Gondwanan vicariance episodes and, thus, the global distribution of Gerbera -complex members must be explained in large part by long-distance dispersal. American species of Leibnitzia are estimated to have diverged from their Asian ancestor during the Quaternary (ca. 2 mya) and either migrated overland to North America via Beringia and retreated southwards along high elevation corridors to their present location in southwestern North America or were dispersed long distance. [source]


Time , size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora

OIKOS, Issue 3 2008
Kjell Bolmgren
Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=,7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants. [source]


Artificial Dispersal as a Restoration Tool in Meadows: Sowing or Planting?

RESTORATION ECOLOGY, Issue 2 2009
Lotta Wallin
Abstract Habitat fragmentation and the abandonment of former agricultural practices have led to extremely low dispersal rates for plant species growing in traditionally managed hay meadows in Sweden. Historically, seed dispersal between populations was maintained by hay movement, grazing animals, and farmers sharing their equipment. Because these means of dispersal typically are no longer occurring, artificial dispersal using seeds and plug-plants is tested here as a restoration tool. In this study, we chose two perennial herbs commonly occurring in meadows as test species, viz, Hypochoeris maculata L. (Asteraceae) and Succisa pratensis Moench. (Dipsacaceae). We found that plug-plant transplants were twice as effective as seed sowing for both species. The seed collection site was found to be important for seed-based establishment and survival; consequently, the choice of donor meadow is important when acquiring seeds used for restoration. We also found that survival of plants introduced as seeds was generally lower at sites harboring species favored by nitrogen as well as at sites in later successional phases. Both methods of introducing meadow species worked well, even though long-term establishment may well be more successful with the plug-plant method due to higher plug-plant establishment 2 years after introduction in the field. [source]


Composition, size and dynamics of the seed bank in a mediterranean shrubland of Chile

AUSTRAL ECOLOGY, Issue 5 2004
Javier A. Figueroa
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above-ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short-lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate-age patches (10,20 years old) rather than in mature vegetation (30,50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank. [source]


Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical Eucalyptus open forest.

AUSTRAL ECOLOGY, Issue 2 2004
Australia, Northern Territory
Abstract This opportunistic study compares the vegetation, fuel loads and vertebrate fauna of part of a 120-ha block of tropical open forest protected from fire for 23 years, and an adjacent block burnt annually over this period. Total fuel loads did not differ significantly between the unburnt and annually burnt sites, but their composition was markedly different, with far less grassy fuel, but far more litter fuel, in the unburnt block. There were major differences between treatments in the composition of trees and shrubs, manifest particularly in the number of stems. There was no overall difference in plant species richness between the two treatments, but richness of woody species was far higher in the unburnt treatment, and of annual and perennial grasses, and perennial herbs in the annually burnt treatment. Change in plant species composition from annually burnt to unburnt treatment was directional, in that there was a far higher representation of rainforest-associated species (with the percentage of woody stems attributable to ,rainforest' species increasing from 24% of all species in the annually burnt treatment to 43% in the unburnt treatment, that of basal area from 9% to 30%, that of species richness from 8% to 17%, and that of cover from 12 to 47%). The vertebrate species composition varied significantly between treatments, but there was relatively little difference in species richness (other than for a slightly richer reptile fauna in the unburnt treatment). Again, there was a tendency for species that were more common in the unburnt treatment to be rainforest-associated species. The results from this study suggest that there is a sizeable and distinct set of species that are associated with relatively long-unburnt environments, and hence that are strongly disadvantaged under contemporary fire regimes. We suggest that such species need to be better accommodated by fire management through strategic reductions in the frequency of burning. [source]


Savannah woodland vegetation in the South-East District of South Australia: the influence of evaporative aerodynamics on the foliage structure of the understorey invaded by introduced annuals

AUSTRAL ECOLOGY, Issue 6 2000
R. L. SPECHT
Abstract Evaporative aerodynamics determine the foliage projective cover of the understorey of perennial tussock grasses and associated perennial herbs in the savannah woodland dominated by Eucalyptus camalduknsis on gleyed podsolic soils in the Mediterranean climate of the South-East District of South Australia. By the mid 1940s, winter-spring evapotranspiration from the ,thin' leaves (with low leaf specific weight) of introduced annual plants was depleting surface soil water and thus reducing the annual growth of the summer-growing savannah understorey; perennial herbs between the tussock grasses were the first to succumb to this competition. During spring, the percentage of the ground covered by the savannah understorey was increased by 10% in the subhumid zone to 30% in the humid zone as the pre-European perennial herbs between the tussock grasses were replaced by introduced annuals. Application of phosphatic fertilizer to the understorey increased the growth of introduced annuals, which formed a dense stratum during their winter-spring growing season, increasing evapotranspiration and leading eventually to the extinction of the native perennial grasses. When the savannah understorey, invaded by introduced annuals in the mid-1940s, was converted to improved pasture, the percentage of ground covered by the seasonal foliage was increased by 20,30%; 100% coverage of overlapping foliage resulted in the humid zone. [source]