Percent Survival (percent + survival)

Distribution by Scientific Domains


Selected Abstracts


Investigation of the Effects of Salinity and Dietary Protein Level on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2007
Martin Perez-Velazquez
It is presumed that in hypo- and hypersaline environments, shrimp's requirements for some specific nutrients, such as protein, may differ from those known in the marine habitat; however, few investigations have been conducted in this area of study. In the present investigation, the effects of salinity and dietary protein level on the biological performance, tissue protein, and water content of Pacific white shrimp, Litopenaeus vannamei, were evaluated. In a 3 × 4 factorial experiment, juvenile shrimp with an average initial weight of 0.36 ± 0.02 g were exposed for 32 d to salinities of 2, 35, and 50 ppt and fed experimental diets with crude protein contents of 25, 30, 35, and 40%. A significant effect of salinity on growth of shrimp was detected, with the growth responses (final weight, weight gain) ranked in the order 2 ppt (3.87, 3.50 g) > 35 ppt (3.40, 3.04 g) > 50 ppt (2.84, 2.47 g). No effects of dietary protein level or an interaction between salinity and protein on growth of shrimp were observed under the experimental conditions of this study. Percent survival of shrimp fed the highest protein content (40%, survival of 74%) was, however, significantly lower than those of shrimp fed the other feeds (25, 30 and 35% protein, survival of 99, 91, and 94%, respectively), a result likely associated with the concentration of total ammonia nitrogen, which increased significantly at increasing protein levels. Final water content of whole shrimp was significantly lower in animals exposed to 50 ppt (70.8%) than in shrimp held at 2 (73.7%) and 35 ppt (72.3%). No effect of salinity, protein, or their interaction was observed on the protein content of whole shrimp. The results of the present study are in agreement with reports of superior and inferior growth of L. vannamei reared in hypo- and hypersaline environments, respectively, as compared to what is generally observed in seawater. [source]


Comparative challenge model of Flavobacterium columnare using abraded and unabraded channel catfish, Ictalurus punctatus (Rafinesque)

JOURNAL OF FISH DISEASES, Issue 8 2003
J A Bader
Abstract The early entry of the fish pathogen Flavobacterium columnare and enhancement by abrasion was studied in channel catfish, Ictalurus punctatus (Rafinesque), using the polymerase chain reaction and a species-specific primer set for a bacterial 16S rRNA gene product. Evaluations were conducted following an abrasion bath immersion challenge with F. columnare. Abrasion, a practice which has historically been used prior to bacterial challenge, had significant effects on the early entry of the pathogen and on cumulative percent survival (CPS). The FvpF1,FvpR1 primer set was useful in detecting the early entry of F. columnare in mucus, skin, gill, blood, liver and trunk kidney tissues in both abraded and unabraded fish following immersion challenge at 29 ± 2 °C. Bacteria were detected earlier in all tissues in abraded fish, except in the trunk kidney. These differences were not significant, except in the case of blood. Mucus, skin and gill tissues were positive for F. columnare earliest regardless of treatment (after 5 min in abraded fish and after 15 min in unabraded fish). CPS following challenge with F. columnare was significantly affected by abrasion, which supports the use of abrasion for the F. columnare challenge model for channel catfish. [source]


OPTIMIZATION OF SPRAY DRYING CONDITIONS FOR PRODUCTION OF BIFIDUS MILK POWDER FROM COW MILK

JOURNAL OF FOOD QUALITY, Issue 4 2006
M. SELVAMUTHUKUMARAN
ABSTRACT Bifidus milk powder was prepared by supplementing cow's milk with predetermined level of additives to obtain slurry of desired concentration. The slurry was sterilized, cooled and inoculated with 24-h-old bulk culture of Bifidobacterium bifidum at 10% and incubated at 37C for 24 h, cooled and dried in SM Scientech Lab model spray dryer with predetermined spray drying conditions. The bifidus milk powder contains bifidobacteria counts from 1.88 × 109 to 15.80 × 109 cells/g dry weight and their percent survival was 4.17,35.11%. Maximum survival was obtained by using the following spray drying conditions: inlet temperature of 164.02C, slurry concentration of 25.62% total soluble solids and air pressure of 2.5 kg/cm2. The high temperature and air pressure of spray drying markedly influenced the color and appearance of final product. The inlet temperature and air pressure showed a significant effect on survival of bifidobacteria in the final product. [source]


Restoration of a Forest Understory After the Removal of an Invasive Shrub, Amur Honeysuckle (Lonicera maackii)

RESTORATION ECOLOGY, Issue 2 2004
Kurt M. Hartman
Abstract The recruitment of native seedlings is often reduced in areas where the invasive Amur honeysuckle (Lonicera maackii) is abundant. To address this recruitment problem, we evaluated the effectiveness of L. maackii eradication methods and restoration efforts using seedlings of six native tree species planted within eradication and unmanipulated (control) plots. Two eradication methods using glyphosate herbicide were evaluated: cut and paint and stem injection with an EZ-Ject lance. Lonicera maackii density and biomass as well as microenvironmental characteristics were measured to study their effects on seedling growth and survivorship. Mean biomass of Amur honeysuckle was 361 ± 69 kg/ha, and density was 21,380 ± 3,171 plants/ha. Both eradication treatments were effective in killing L. maackii (, 94%). The injection treatment was most effective on large L. maackii individuals (>1.5 cm diameter), was 43% faster to apply than cutting and painting and less fatiguing for the operator, decreased operator exposure to herbicide, and minimized impact to nontarget vegetation. Deer browse tree protectors were used on half of the seedlings, but did not affect survivorship or growth. After 3 years, survival of native seedlings was significantly less where L. maackii was left intact (32 ± 3%) compared with the eradication plots (p < 0.002). Seedling survival was significantly different between cut (51 ± 3%) and injected (45 ± 3%) plots. Species had different final percent survival and rates of mortality. Species survival differed greatly by species (in descending order): Fraxinus pennsylvanica > Quercus muehlenbergii , Prunus serotina, Juglans nigra > Cercis canadensis > Cornus florida. Survivorship and growth of native seedlings was affected by a severe first-year drought and by site location. One site exhibited greater spring soil moisture, pH, percent open canopy, and had greater survivorship relative to the other site (55 ± 2 vs. 30 ± 2%). Overall, both L. maackii eradication methods were successful, but restorationists should be aware of the potential for differential survivorship of native seedlings depending on species identity and microenvironmental conditions. [source]


Combined Effects of Host Plant Quality and Predation on a Tropical Lepidopteran: A Comparison between Treefall Gaps and the Understory in Panama

BIOTROPICA, Issue 6 2008
Lora A. Richards
ABSTRACT In tropical forests, light-gaps created from treefalls are a frequent source of habitat heterogeneity. The increase in productivity, through gap formation, can alter food quality, predation and their impact on insect herbivores. We hypothesized that in gaps, herbivores would be less resource-limited and more predator limited, whereas in the understory, we predicted the reverse. In this study, we investigate the combined effects of food quality and predation on the lepidopteran larva Zunacetha annulata feeding on its host plant Hybanthus prunifolius in two habitats; sunny treefall gaps and the shaded understory in Panama. In bioassays, Z. annulata feeding on sun leaves ate 22 percent less leaf area, grew 25 percent faster, and had higher pupal weights than larvae feeding on shade leaves. However, shade leaves had higher nitrogen content and specific leaf area. In gaps, predation was 26.4 percent compared to 13.8 percent in the understory. Larvae on understory plants traveled greater distances and spent more time searching and traveling than larvae on gap plants. These differences in behavior are consistent with lower predation risk and lower quality food in the understory. Using data from bioassays and field experiments we calculated 0.22 percent and 1.02 percent survival to adulthood for larvae in gaps and the understory, respectively. In conclusion, although these habitats were in close proximity, we found that larvae in the understory are more resource-limited and larvae in gaps are more predator limited. [source]