Penetration Depth (penetration + depth)

Distribution by Scientific Domains


Selected Abstracts


Effect of Temperature (,5 to 130 °C) and Fiber Direction on the Dielectric Properties of Beef Semitendinosus at Radio Frequency and Microwave Frequencies

JOURNAL OF FOOD SCIENCE, Issue 6 2008
N. Basaran-Akgul
ABSTRACT:, The dielectric properties must be defined to design efficient radio frequency (RF) and microwave (MW) processes by the food manufacturers. The objective of this study was to understand how frequency, temperature, and muscle fiber orientation influence the dielectric properties. The eye of round (Semitendinosus) muscle was selected because it contains large, relatively uniform muscle cells with similar muscle fiber orientation and relatively uniform chemical composition throughout the tissue. Dielectric properties were measured using an open-ended coaxial probe technique at 27, 915, and 1800 MHz and temperatures between ,5 and 130 °C. Power penetration depth was calculated. Since many commercially prepared, thermally processed, ready-to-eat entrees are made with frozen meat, dielectric property measurements were started from ,5 °C. The dielectric constant and dielectric loss factors were often higher for muscle with the muscle fiber measured in a parallel orientation to the probe compared to samples of the same treatment (for example, fresh or frozen) in a perpendicular tissue orientation at the same frequency and temperature. Dielectric constant and loss values for frozen beef tended to be higher than fresh beef at the same temperature and frequency. Tissue orientation appeared to have a greater effect on dielectric loss values at lower frequencies. Penetration depth tended to be greater when the direction of propagation was perpendicular to the muscle fiber. [source]


Transdermal drug delivery by coated microneedles: geometry effects on drug concentration in blood

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009
Barrak Al-Qallaf
Abstract Drug administration through transdermal delivery is restricted by the top layer of skin, the stratum corneum. One possible solution to overcome the barrier function of the stratum corneum is to employ microneedle arrays. However, detailed theoretical models relating drug-coated microneedles and their geometry to the drug concentration in the blood are limited. This article aims to address this issue by examining the blood concentration profiles for a model drug, insulin, that has been administered via coated microneedles. A mathematical model is introduced and applied to predict theoretical blood concentrations. Furthermore, the insulin concentration in blood is calculated for a range of different microneedle shapes and dimensions to identify the most effective geometry. The results indicate that the optimum microneedle geometry in terms of maximizing insulin concentration was a rocket-shaped needle with a constant tip angle of 90°. Also, it has been found that the number of microneedles in an array is the most significant factor in determining maximum insulin concentration in the blood (Cb, max). Penetration depth of the microneedle, centre-to-centre spacing and microneedle thickness had a less significant effect on the maximum insulin concentration in the blood. It is envisaged that the current study will help in designing microneedles of optimum size and shape for transdermal drug delivery. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Validation of two dual fluorescence techniques for confocal microscopic visualization of resin penetration into enamel caries lesions

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 7 2009
Sebastian Paris
Abstract Fluorescence confocal microscopy is a useful tool to analyze the infiltration of enamel caries lesions with low-viscosity resins (infiltrants) in vitro. The conventionally used staining technique, which comprises dye labeling of the resin, has been shown to be limited by chromatographic separation of the resin-dye-mixture during penetration. The aim of this study was to develop an improved dual staining technique and to compare validity and reproducibility of both methods. Human molars with proximal white spots were cut across the demineralizations. After varnishing the cut surfaces, paired lesion halves were infiltrated with an infiltrant using either one of two different staining techniques. For the conventional direct technique (A) the infiltrant was labeled with rhodamine isothiocyanate (RITC) prior to application. Using the new indirect technique (B) lesions were stained with RITC solution and subsequently infiltrated with pure infiltrant. After light curing, unbound dye was bleached by immersion in hydrogen peroxide. Remaining lesion pores were stained with sodium fluorescein solution. Penetration depths (PD) and lesion depths (LD) were evaluated by five examiners using confocal microscopy and compared with the results of scanning electron microscopic (SEM; PD) and microradiographic (TMR; LD) analysis. The indirect technique showed better correlation (intraclass coefficients) with SEM (0.990) and TMR (0.982) compared with the direct technique (SEM: 0.513; TMR: 0.702). Inter- and intrarater reliability was higher for technique B compared with technique A. The new indirect technique yields to more valid and reliable results to visualize infiltrant penetration into natural enamel caries lesions compared with the conventional method. Microsc. Res. Tech. 2009. © 2009 Wiley-Liss, Inc. [source]


Influence of the Wall Characteristics on the Development of MARFE in Tokamaks

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 7-9 2006
O. Marchuk
Abstract Multifaceted asymmetric radiation from the edge (MARFE) normally develops in fusion devices close to the density limit. MARFE is considered a result of thermal instabilities excited under critical conditions through different mechanisms: impurity radiation, recycling of neutral particles, anomalous transport of charged particles and energy. Recent experiments on tokamaks TEXTOR and JET show that plasma-wall interaction, leading to release of recycling neutrals and impurities, plays a very important role for the formation of MARFE. In the present contribution we develop further the MARFE models based on the instability of particle recycling on the tokamak wall by including a simple description for the release of recycling neutrals from the wall surface into the plasma. This development takes into account the time delay between the out flow of charged particles from the plasma and in flux of neutrals. The linear stability analysis shows that this does not change the critical plasma density for the MARFE formation but modifies significantly the growth rate of unstable perturbations developing when the density exceeds the threshold. These findings are confirmed in a non-linear consideration by solving the equations for the particle, momentum and energy transfer in the plasma coupled with the wall particle balance equations. This is done in a one-dimensional approximation by taking into account the variation of the main plasma parameters in the poloidal direction and making averaging in the radial direction over the plasma edge width of the penetration depth of neutrals. The intrinsic poloidal asymmetry of the system, defining the MARFE localization, is introduced by the Shafranov shift of magnetic flux surfaces. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy

DEVELOPMENTAL DYNAMICS, Issue 12 2009
Xianke Shi
Abstract Zebrafish and Drosophila are animal models widely used in developmental biology. High-resolution microscopy and live imaging techniques have allowed the investigation of biological processes down to the cellular level in these models. Here, using fluorescence correlation spectroscopy (FCS), we show that even processes on a molecular level can be studied in these embryos. The two animal models provide different advantages and challenges. We first characterize their autofluorescence pattern and determine usable penetration depth for FCS especially in the case of zebrafish, where tissue thickness is an issue. Next, the applicability of FCS to study molecular processes is shown by the determination of blood flow velocities with high spatial resolution and the determination of diffusion coefficients of cytosolic and membrane-bound enhanced green fluorescent protein,labeled proteins in different cell types. This work provides an approach to study molecular processes in vivo and opens up the possibility to relate these molecular processes to developmental biology questions. Developmental Dynamics 238:3156,3167, 2009. © 2009 Wiley-Liss, Inc. [source]


Electrode design for skin electroporation with minimal nerve stimulation

EXPERIMENTAL DERMATOLOGY, Issue 9 2004
U. Pliquett
Electroporation is an efficient tool for transdermal delivery of water-soluble molecules sizing up to several kDa. The main barrier to these agents is the stratum corneum, a 15 mm thin layer of dead keratinized cells. Once this layer is charged (approximately 50 V) by an outer electric field, structural rearrangements of the lipids create aqueous pathways (electroporation). Due to the high electric field within the stratum corneum, (E = 50 V/15 µm = 33 kV/cm) electrophoresis can drive charged molecules into the deeper skin layers. A major concern is the high electric field required, because nerve stimulation is inconvenient for the patient. Taking advantage of the fact that up to a depth of 50 µm no nervous receptors appear, a confinement of the field within the upper 15 µm would circumvent sensation. Field confinement within the stratum corneum is arranged by a special electrode geometry, an array of 300 µm holes within a 0.5 mm thick dielectric. The bottom, facing the stratum corneum, is metalized with a gap to the holes. The size of this gap (3,10 µm) is critical for the penetration depth of the electric field between the metalized bottom and a distant electrode at the other side of the holes. A drug reservoir is implemented below the distant electrode and the dielectric. [source]


A pyrolysis model of charring materials considering the effect of ambient oxygen concentration

FIRE AND MATERIALS, Issue 7 2007
W. G. Weng
Abstract In this paper, a one-dimensional integral model is developed to describe the processes involved in the transient pyrolysis of a semi-infinite charring material subjected to a constant radiant heat flux. In this model, a special factor that shows the effect on pyrolysis is considered, i.e. under the oxygen-containing atmosphere. The model tracks the char layer depth, thermal penetration depth, surface temperature and mass loss rate. Comparison with experimental results demonstrates that the predictions of the mass loss rate and temperature profile within the charring material are in good agreement with the experiment. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Enhanced exoenzyme activities in sediments in the presence of deposit-feeding Chironomus riparius larvae

FRESHWATER BIOLOGY, Issue 9 2007
PETER STIEFArticle first published online: 10 JUN 200
Summary 1. The combined effects of deposit-feeding, bioturbation and bioirrigation by benthic macrofauna on the enzymatic hydrolysis of organic matter were studied in microcosms. Chironomus riparius larvae (Insecta, Diptera) served as model macrofauna and stinging nettle leaves (Urtica dioica) were used as a detrital food source. 2. In the upper 10 mm of the sediment (the habitat of C. riparius larvae), the activities of several exoenzymes, the contents of several fractions of particulate organic matter (POM), and the concentrations of dissolved oxidants (O2, NO) were measured on a small scale. Fluorescent particles (luminophores) were used to quantify the vertical redistribution of particles within the same layer. 3. In control sediment, the addition of detrital food enhanced exoenzyme activities in the 0,2 mm layer only. In the presence of C. riparius larvae, exoenzyme activities increased to 10 mm depth. Further, the content of POM in the 0,2 mm layer was lower in the presence than in the absence of larvae, suggesting ingestion and subduction of the added detritus. After prolonged incubation without further food addition, exoenzyme activities returned close to background values in both treatments, whereas the vertical distribution of POM remained unchanged. 4. The overall penetration depth of O2 and NO into the sediment was greater in the presence than the absence of C. riparius, the differences being more pronounced after prolonged incubation. Locally high O2 and NO concentrations due to bioirrigation by C. riparius were measured deep in the sediment. Net downward transport of particles was observed only in the presence of C. riparius larvae and only at the beginning of the incubation. 5. I conclude that deposit-feeding and bioturbation by macrofauna can quickly remove freshly deposited POM from the sediment surface and transfer it to less oxygenated sites (i.e. animal guts and deep sediment layers). Bioirrigation also increases the availability of oxidants deep in the sediment. The oscillation of oxidant supply to POM particles by ingestion,egestion, burial and re-burial, and the intermittent bioirrigation of subsurface sediment, is probably the cause of the increased rate of organic matter hydrolysis, the rate-limiting step in mineralization. [source]


Prediction of vortex penetration depth at thermal stratification by cavity flow in a branch pipe with closed end (effect of heat radiation condition on temperature fluctuations)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2007
Kouji Shiina
Abstract In a branch pipe with one closed end, the cavity flow penetrates into the branch pipe from the main loop and a thermal boundary layer occurs because the cavity flow is a hot fluid, but heat removal causes a colder fluid in the branch pipe. This thermal stratification may affect the structural integrity. Therefore, a pipe design standard to suppress thermal fatigue should be established. The pipe design standard consists of the maximum penetration depth Lsv and the minimum penetration depth Lsh. In order to establish an evaluation method for Lsh, a visualization test and a temperature fluctuation test were carried out. A theoretical formula for thermal stratification was introduced from the heat balance model. Then the model was used to obtain an empirical equation from the map of fluid temperature fluctuation. This method can predict the vortex penetration depth by cavity flow in horizontal branch pipes. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1):38,55, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20135 [source]


Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope

HYDROLOGICAL PROCESSES, Issue 9 2010
Huade Guan
Abstract The effects of vegetation root distribution on near-surface water partitioning can be two-fold. On the one hand, the roots facilitate deep percolation by root-induced macropore flow; on the other hand, they reduce the potential for deep percolation by root-water-uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10,7 m/s), while it is insignificant in soils with a Kmatrix larger than 10,5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root-macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay-rich soil layer without root-induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low-permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd. [source]


The percentage of gutta-percha-filled area in simulated curved canals when filled using Endo Twinn, a new heat device source

INTERNATIONAL ENDODONTIC JOURNAL, Issue 8 2006
G. Pagavino
Abstract Aim, To compare the percentage of gutta-percha-filled area (PGP) in simulated root canals when varying the penetration depth and function of the pluggers (heat versus heat plus vibration) using Endo Twinn. Methodology, Sixty-four resin blocks with simulated 34,35° curved canals were randomly divided into two groups in order to obtain two canal shapes: group A with 0.8 taper and group B with 0.4 taper. The apical portion of each canal was prepared to a size 20 K-file. The canals were filled with gutta-percha in combination with a root canal sealer. In each group 16 canals were filled using the Endo Twinn heat function and 16 canals by means of both the heat and the vibration function. All samples were sectioned horizontally at three levels (1.25, 2.5 and 4.0 mm from the working length) and the PGP was measured. Data were analysed using anova test. Results, At the 1.25 mm level PGP was significantly greater using the vibration function (P = 0.0329) and in 0.8 taper canals (P < 0.0001). At the 2.5 mm level the PGP was greater in the canals with 0.8 taper compared with a 0.4 taper with or without vibration (vibration, P = 0.0056; interaction taper-vibration, P = 0.0020). In 0.4 taper canals the PGP was greater when the vibration function was activated. At the 4 mm level in 0.8 taper canals there was no significant difference in PGP with or without the vibration (P = 0.6742). Conclusions, 0.8 taper canals had significantly greater PGP than 0.4 taper canals. At the 1.25 mm level there was significantly greater PGP when the vibration function was activated. [source]


A comparison of spreader penetration depth and load required during lateral condensation in teeth prepared using various root canal preparation techniques

INTERNATIONAL ENDODONTIC JOURNAL, Issue 8 2005
S. F. Dulaimi
Abstract Aim, To compare the influence of various root canal preparation techniques on spreader penetration depth and load required during lateral condensation with gutta-percha and sealer. Methodology, Eighty extracted human teeth with single and straight canals were used. Twenty teeth were instrumented using one of four root canal preparation techniques. The four preparation techniques were: step-back technique without Gates-Glidden drills, step-back technique with Gates-Glidden drills, crown-down pressureless technique and hybrid technique (step-down/step-back). After root canal preparation had been completed a simulated periodontal ligament was fabricated from a uniform layer of silicone impression material. The roots were then mounted in an acrylic resin to simulate the physical condition found in tooth socket. A standardized stainless steel hand spreader of the same size as the master apical file was mounted in an Instron testing machine and lateral compaction with gutta-percha and sealer was performed. The load value was recorded from the Instron testing machine. The spreader penetration depths were measured with an endodontic ruler. The data obtained were analysed statistically using anova and Student's t -tests. Results, No significant difference in initial spreader load needed to condense the master cone was found amongst the four canal preparation techniques (P > 0.05). The step-back technique with Gates-Glidden drills and the hybrid technique demonstrated the least difference between the initial spreader penetration and the working length (mean 1.925 and 2.25 mm, respectively). The step-back technique without Gates-Glidden drills and the crown-down pressureless technique had the greatest difference between initial spreader penetration and the working length (mean 4.425 and 4.75 mm, respectively). Conclusion, The flare created by canal preparation affected spreader penetration depth, but had no effect on the spreader load. [source]


Measurements and numerical simulations for optimization of the combustion process in a utility boiler

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2004
A. Vikhansky
Abstract A three-dimensional computational fluid dynamics code was used to analyse the performance of 550MW pulverized coal combustion opposite a wall-fired boiler (of IEC) at different operation modes. The main objective of this study was to prove that connecting plant measurements with three-dimensional furnace modelling is a cost-effective method for design, optimization and problem solving in power plant operation. Heat flux results from calculations were compared with measurements in the boiler and showed good agreement. Consequently, the code was used to study hydrodynamic aspects of air,flue gases mixing in the upper part of the boiler. It was demonstrated that effective mixing between flue gases and overfire air is of essential importance for CO reburning. From our complementary experimental-numerical effort, IEC considers a possibility to improve the boiler performance by replacing the existing OFA nozzles by those with higher penetration depth of the air jets, with the aim to ensure proper mixing to achieve better CO reburning. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomography: Imaging at 1310 nm vs.

JOURNAL OF BIOPHOTONICS, Issue 6-7 2009
1550 nm wavelength
Abstract We report on recent progress in Fourier domain mode-locking (FDML) technology. The paper focuses on developments beyond pushing the speed of these laser sources. After an overview of improvements to FDML over the last three years, a brief analysis of OCT imaging using FDML lasers with different wavelengths is presented. For the first time, high speed, high quality FDML imaging at 1550 nm is presented and compared to a system at 1310 nm. The imaging results of human skin for both wavelengths are compared and analyzed. Sample arm optics, power on the sample, heterodyne gain, detection bandwidth, colour cut levels and sample location have been identical to identify the influence of difference in scattering and water absorption. The imaging performance at 1310 nm in human skin is only slightly better and the results suggest that water absorption only marginally affects the penetration depth in human skin at 1550 nm. For several applications this wavelength may be preferred. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


X-ray fluorescence microprobe imaging in biology and medicine

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006
Tatjana Paunesku
Abstract Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM,building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues. J. Cell. Biochem. 99: 1489,1502, 2006. © 2006 Wiley-Liss, Inc. [source]


The effect of headspace pressure on the performance of a fluidised-bed bioreactor

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2002
J Fung
Abstract This study compares the biological performance of three fluidised-bed biological reactors under conditions of different headspace pressures. The application of pressure can have a profound effect on the initial rate of bed growth. However, once the fluidised-bed reaches full expansion, the biological performance at higher pressures is greater than those at lower pressures. There appears to be an almost linear relationship between the application of pressure and the performance of the fluidised-bed biological reactors in removing soluble BOD5. This can be attributed to the increase in the oxygen concentration in the bulk liquid and a greater oxygen penetration depth within the biofilm. © 2002 Society of Chemical Industry [source]


Effect of Temperature (,5 to 130 °C) and Fiber Direction on the Dielectric Properties of Beef Semitendinosus at Radio Frequency and Microwave Frequencies

JOURNAL OF FOOD SCIENCE, Issue 6 2008
N. Basaran-Akgul
ABSTRACT:, The dielectric properties must be defined to design efficient radio frequency (RF) and microwave (MW) processes by the food manufacturers. The objective of this study was to understand how frequency, temperature, and muscle fiber orientation influence the dielectric properties. The eye of round (Semitendinosus) muscle was selected because it contains large, relatively uniform muscle cells with similar muscle fiber orientation and relatively uniform chemical composition throughout the tissue. Dielectric properties were measured using an open-ended coaxial probe technique at 27, 915, and 1800 MHz and temperatures between ,5 and 130 °C. Power penetration depth was calculated. Since many commercially prepared, thermally processed, ready-to-eat entrees are made with frozen meat, dielectric property measurements were started from ,5 °C. The dielectric constant and dielectric loss factors were often higher for muscle with the muscle fiber measured in a parallel orientation to the probe compared to samples of the same treatment (for example, fresh or frozen) in a perpendicular tissue orientation at the same frequency and temperature. Dielectric constant and loss values for frozen beef tended to be higher than fresh beef at the same temperature and frequency. Tissue orientation appeared to have a greater effect on dielectric loss values at lower frequencies. Penetration depth tended to be greater when the direction of propagation was perpendicular to the muscle fiber. [source]


Potential of ,flat' fibre evanescent wave spectroscopy to discriminate between normal and malignant cells in vitro

JOURNAL OF MICROSCOPY, Issue 2 2007
Z. HAMMODY
Summary The present study focuses on evaluating the potential of flattened AgClBr fibre-optic evanescent wave spectroscopy (FTIR-FEWS) technique for detection and identification of cancer cells in vitro using cell culture as a model system. The FTIR-FEWS results are compared to those from FTIR-microspectroscopy (FTIR-MSP) method extensively used to identify spectral properties of intact cells. Ten different samples of control and malignant cells were measured in parallel by the above two methods. Our results show a significant similarity between the results obtained by the two methodologies. The absorbance level of Amide I/Amide II, phosphates and carbohydrates were significantly altered in malignant compared to the normal cells using both systems. Thus, common biomarkers such as Amide I/Amide II, phosphate and carbohydrate levels can be derived to discern between normal and cancer cells. However, marked differences are also noted between the two methodologies in the protein bands due to CH3 bending vibration (1480,1350 cm,1). The spectral differences may be attributed to the variation in the penetration depth of the two methodologies. The use of flattened fibre rather than the standard cylindrical fibre has several practical advantages and is considered as an important step towards in vivo measurements in real time, such as that of skin nevi and melanoma using special designs of fibre-optic,based sensors. [source]


Multiphoton microscopy in life sciences

JOURNAL OF MICROSCOPY, Issue 2 2000
K. König
Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm,2 to GW cm,2, which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi-gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non-invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth-resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non-invasive fluorophore loading into single living plant cells. Non-destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis-like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two-photon excitation process rather than a one-photon or three-photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two-photon vital cell studies. In labelled cells, additional phototoxic effects may occur via photodynamic action. This has been demonstrated for aminolevulinic acid-induced protoporphyrin IX and other porphyrin sensitizers in cells. When the light intensity in NIR microscopes is increased to TW cm,2 levels, highly localized optical breakdown and plasma formation do occur. These femtosecond NIR laser microscopes can also be used as novel ultraprecise nanosurgical tools with cut sizes between 100 nm and 300 nm. Using the versatile nanoscalpel, intracellular dissection of chromosomes within living cells can be performed without perturbing the outer cell membrane. Moreover, cells remain alive. Non-invasive NIR laser surgery within a living cell or within an organelle is therefore possible. [source]


Imaging pharmaceutical tablets with optical coherence tomography

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2010
Jakob M.A. Mauritz
Abstract Optical coherence tomography (OCT) is a recently developed optical technique that produces depth profiles of three-dimensional objects. It is a nondestructive interferometric method responding to refractive index variation in the sample under study and can reach a penetration depth of a few millimetres. OCT employs near-infrared (NIR) light and therefore provides a link between NIR spectroscopy and Terahertz (THz) measurements that are often used to characterise tablets. In this article we assess the potential of OCT as a reliable and practical tool in the analysis of pharmaceutical tablets and coatings. A variety of tablets were tested with different shapes, formulations and coatings. We consider the origins of contrast in the obtained images and demonstrate that it correlates strongly with the expected tablet structure. The influence of absorption and scattering are considered for the wavelength ranges used. The results show that OCT is a promising diagnostic tool with an important role to play in the tablet and coating technologies. The high measurement speed of OCT and its relative ease of implementation make it also an attractive candidate technology for in-line quality control during manufacturing. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:385,391, 2010 [source]


Nanometer-scale surface modification by polymerization of tetrafluoroethylene on polymer substrates in supercritical fluoroform

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2008
Toshiaki Mori
Abstract Surface penetrated polymerization of tetrafluoroethylene (TFE) was carried out on a polycarbonate (PC) plate in supercritical fluoroform (scCHF3). Since the high diffusiveness is one of peculiar features of supercritical fluids, TFE monomers and initiators (perfluorinated benzoyl peroxide) could penetrate into the surface of polymer substrates and be photo-polymerized. After washing physisorbed homopolymers on the surface, polytetrafluoroethylene (PTFE) was found to penetrate into 50,800 nm depth from the surface and covered the PC surface in the proportion of 85%. The surface coverage density and the penetration depth could be controlled by adjusting of the pressure of scCHF3. The TFE-penetrated polymerization could be applied for various polymer plates such as polyethylene, polystyrene, polypropylene, poly(ethylene terephthalate), and polyimide. In addition to polymer plates, this technique could be applied to a cellulose paper, a nylon textile, and a porous PC membrane. The PTFE-penetrated nylon textile showed a high resistance for washing test with detergents, compared with the commercial fluoropolymer-sprayed nylon textile. The PTFE-penetrated porous PC membrane showed high oxygen permeability (P/P = 5.2), compared with that of the untreated PC membrane (P/P = 3.5) in gas permeation experiments of O2 and N2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1577,1585, 2008 [source]


Spectroscopic study of the penetration depth of grafted polystyrene onto poly(tetrafluoroethylene- co -perfluoropropylvinylether) substrates.

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2002

Abstract This study concerns the radiation grafting of styrene onto poly(tetrafluoroethylene- co -perfluoropropylvinylether) (PFA) substrates and the penetration depth of the graft. Grafting was obtained by the simultaneous irradiation method, and the spectroscopic analysis was made with the micro-Raman technique. Effects of grafting conditions such as the type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol, respectively. A mixture of methanol and dichloromethane used as a solvent for styrene achieved a higher degree of grafting and concentration of grafted polystyrene onto the surface of PFA substrates than solutions of the monomer in the separate solvents. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3191,3199, 2002 [source]


Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy

LASERS IN SURGERY AND MEDICINE, Issue 4 2001
Joerg P. Ritz MD
Abstract Background and Objective Laser-induced thermotherapy (LITT) is a promising treatment for irresectable liver tumors. To predict the effects of laser applications and to optimize treatment planning in LITT, it is essential to gain knowledge about light distribution in tissue, tissue optical properties (absorption, scattering, anisotropy, penetration depth), and their continuous changes during therapy. Study Design/Materials and Methods Measurements of optical properties were performed with a double integrating-sphere system and a laser diode (830 nm). Porcine liver tissue samples were examined in a native state (35°C) and after exposure to different temperatures (45°C to 80°C). Results Rising temperature was accompanied by a decrease in the absorption coefficient and anisotropy factor and an increase in the scattering coefficient. These changes were only significant in the temperature range of 50° to 65°C (P,<,0.01). The optical penetration depth decreased from 3.1mm in the native state to 1.7mm at 65°C (P,<,0.01). Above 65°, there was no significant change in the tissue optical properties. Conclusions The optical properties of liver tissue change significantly under the influence of tissue heating, resulting in a decreased optical penetration depth. These changes occur mainly in the temperature range of 50°C to 65°C, corresponding to protein denaturation. To ensure a safe and effective procedure, an adjustment of the laser power to the actual penetration depth is recommended during therapy. Lasers Surg. Lasers Surg. Med. 28:307,312, 2001. © 2001 Wiley-Liss, Inc. [source]


Virtual biopsy of the joint tissues using near-infrared, reflectance confocal microscopy.

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 10 2006
A pilot study
Abstract Standard noninvasive imaging techniques applied to joints provide gross morphological features, insufficient for assessing histological detail. On the other hand, biopsying is invasive, time consuming, and may involve unwanted processing artifacts. Near-infrared reflectance confocal microscopy is a technique that allows serial, high-resolution optical sectioning through intact tissues without employing exogenous fluorescent stains. The aim of this work was to evaluate the potential utility of near-infrared reflectance confocal microscopy for providing immediate histological information on meniscus, articular cartilage, epiphyseal plate, bone, muscle, and tendon. Images from near-infrared reflectance confocal microscopy were compared with mirror routine histology sections. Characteristic architectural features were readily visualized in the three dimensions of space. Additionally, the use of experimental contrast agents highlighted the localization of nuclei. Limitations include penetration depth and minor optical artifacts. In conclusion, near-infrared reflectance confocal microscopy is a useful technique for immediate, nondestructive, serial "virtual" sectioning through intact tissues, being thus a potential adjunct to current imaging techniques in orthopedics. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source]


Photodynamic Treatment of the Dermatophyte Trichophyton rubrum and its Microconidia with Porphyrin Photosensitizers,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2004
Threes G. M. Smijs
ABSTRACT The application of photosensitizers for the treatment of fungal infections is a new and promising development within the field of photodynamic treatment (PDT). Dermatophytes, fungi that can cause infections of the skin, hair and nails, are able to feed on keratin. Superficial mycoses are probably the most prevalent of infectious diseases in all parts of the world. One of the most important restrictions of the current therapeutic options is the return of the infection and the duration of the treatment. This is especially true in the case of infections of the nail (tinea unguium) caused by Trichophyton rubrum, an anthropophilic dermatophyte with a worldwide distribution. Recently, we demonstrated that 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B) and deuteroporphyrin monomethylester were excellent photosensitizers toward T. rubrum when using broadband white light. This study demonstrates the photodynamic activity of these photosensitizers with red light toward both a suspension culture of T. rubrum and its isolated microconidia. The higher penetration depth of red light is important for the PDT of nail infections. In addition, we tested the photodynamic activity of a newly synthesized porphyrin, quinolino-[4,5,6,7-efg]-7-demethyl-8-deethylmesoporphyrin dimethylester, displaying a distinct peak in the red part of the spectrum. However, its photodynamic activity with red light toward a suspension culture of T. rubrum appeared to be only fungistatic. Sylsens B was the best photosensitizer toward both T. rubrum and its microconidia. A complete inactivation of the fungal spores and destruction of the fungal hyphae was found. In studies into the photostability, Sylsens B appeared to be photostable under the conditions used for fungal PDT. A promising result of this study is the demonstration of the complete degradation of the fungal hyphae in the time after the PDT and the inactivation of fungal spores, both with red light. These results offer the ingredients for a future treatment of fungal infections, including those of the nail. [source]


Absorbance kinetics of dye-doped systems with photochemical first order kinetics

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 6 2007
Romano A. Rupp
Abstract Often it is assumed that absorbance decays in photochromic materials with the time dependence of the photochemical kinetics, i.e. exponentially for first order kinetics. Although this may hold in the limiting case of vanishing absorbance, deviations are to be expected for realistic samples, because the local photochemical kinetics slows down with increasing initial absorption and penetration depth of the radiation. We discuss the theory of the kinetics of initially homogeneous photochromic samples and derive analytical solutions. In extension of Tomlinson's theory we find an analytical solution that holds with good approximation even for samples that exhibit a small residual absorption in the saturation limit. The theoretical time dependence of the absorbance originating from photochemical first order kinetics of dye-doped systems is compared with experimental data published by Lafond et al. for fulgides doped in different polymer matrices. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Spin triplet superconductivity in Sr2RuO4

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 2 2003
Karol I. Wysoki
Abstract Sr2RuO4 is at present the best candidate for being a superconducting analogue of the triplet superfluidity in 3He. This material is a good (albeit correlated) Fermi liquid in the normal state and an exotic superconductor below Tc. The mechanism of superconductivity and symmetry of the order parameter are the main puzzling issues of on-going research. Here we present the results of our search for a viable description of the superconducting state realised in this material. Our calculations are based on a three-dimensional effective three-band model with a realistic band structure. We have found a state with non-zero order parameter on each of the three sheets of the Fermi surface. The corresponding gap in the quasi-particle spectrum has line or point nodes on the , and , sheets and is complex with no nodes on the , sheet. This state describes remarkably well a number of existing experiments including power low temperature dependence of the specific heat, penetration depth, thermal conductivity etc. The stability of the state with respect to disorder and different interaction parameters are also analyzed briefly. [source]


Modification of Nafion membrane using poly(4-vinyl pyridine) for direct methanol fuel cell

POLYMER INTERNATIONAL, Issue 5 2006
Jeon Chan Woong
Abstract Perfluorinated membrane such as Nafion (from Du-Pont) has been used as a polymer electrolyte membrane. Nafion 117 membrane, which was usually used as the electrolyte membrane for the polymer electrolyte membrane fuel cell (PEMFC), was modified by using poly(4-vinyl pyridine) (P4VP) to reduce the methanol crossover, which cause fuel losses and lower power efficiency, by the formation of an ionic crosslink structure (sulfonic acid-pyridine complex) on the Nafion 117 surface. Nafion film was immersed in P4VP/N -methyl pyrrolidone (NMP) solution. P4VP weight percent of modified membrane was controlled by changing the concentration of P4VP/NMP solution and the dipping time. P4VP weight percent increased with increasing concentration of dipping solution and dipping time. The thickness of the P4VP layer increased with increasing concentration of dipping solution and dipping time when the concentration of the dipping solution was low. At high P4VP concentration, the thickness of the P4VP layer was almost constant owing to the formation of acid,base complex which interrupted the penetration of P4VP. FTIR results showed that P4VP could penetrate up to 30 µm of Nafion 117 membrane. Proton conductivity and methanol permeability of modified membrane were lower than those of Nafion 117. Both decreased with increasing concentration of dipping solution and dipping time. Methanol permeability was observed to be more dependent on the penetration depth of P4VP. Water uptake of the modified membrane, the important factor in a fuel cell, was lower than that of Nafion 117. Water uptake also decreased with increasing of P4VP weight. On the basis of this study, the thinner the P4VP layer on the Nafion 117 membrane, the higher was the proton conductivity. Methanol permeability decreased exponentially as a function of P4VP weight percent. Copyright © 2006 Society of Chemical Industry [source]


Comparative study of the radiation-induced grafting of styrene onto poly(tetrafluoroethylene- co -perfluoropropylvinyl ether) and polypropylene substrates.

POLYMER INTERNATIONAL, Issue 5 2003
I: Kinetics, structural investigation
Abstract A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene- co -perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. Copyright © 2003 Society of Chemical Industry [source]


Depth profiling of polymer films with grazing-incidence small-angle X-ray scattering

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 3 2009
Marsha A. Singh
A model-free method of reconstructing depth-specific lateral scattering from incident-angle-resolved grazing-incidence small-angle X-ray scattering (GISAXS) data is proposed. The information on the material which is available through variation of the X-ray penetration depth with incident angle is accessed through reference to the reflected branch of the GISAXS process. Reconstruction of the scattering from lateral density fluctuations is achieved by solving the resulting Fredholm integral equation with minimal a priori information about the experimental system. Results from simulated data generated for hypothetical multilayer polymer systems with constant absorption coefficient are used to verify that the method can be applied to cases with large X-ray penetration depths, as typically seen with polymer materials. Experimental tests on a spin-coated thick film of a blend of diblock copolymers demonstrate that the approach is capable of reconstruction of the scattering from a multilayer structure with the identification of lateral scattering profiles as a function of sample depth. [source]