Home About us Contact | |||
Peptide Synthetases (peptide + synthetase)
Kinds of Peptide Synthetases Selected AbstractsMyxovirescin A Biosynthesis is Directed by Hybrid Polyketide Synthases/Nonribosomal Peptide Synthetase, 3-Hydroxy-3-Methylglutaryl,CoA Synthases, and trans-Acting AcyltransferasesCHEMBIOCHEM, Issue 8 2006Vesna Simunovic M.S. Abstract Myxococcus xanthus DK1622 is shown to be a producer of myxovirescin (antibiotic TA) antibiotics. The myxovirescin biosynthetic gene cluster spans at least 21 open reading frames (ORFs) and covers a chromosomal region of approximately 83 kb. In silico analysis of myxovirescin ORFs in conjunction with genetic studies suggests the involvement of four type I polyketide synthases (PKSs; TaI, TaL, TaO, and TaP), one major hybrid PKS/NRPS (Ta-1), and a number of monofunctional enzymes similar to the ones involved in type II fatty-acid biosyntesis (FAB). Whereas deletion of either taI or taL causes a dramatic drop in myxovirescin production, deletion of both genes (,taIL) leads to the complete loss of myxovirescin production. These results suggest that both TaI and TaL PKSs might act in conjunction with a methyltransferase, reductases, and a monooxygenase to produce the 2-hydroxyvaleryl,S,ACP starter that is proposed to act as the biosynthetic primer in the initial condensation reaction with glycine. Polymerization of the remaining 11 acetates required for lactone formation is directed by 12 modules of Ta-1, TaO, and TaP megasynthetases. All modules, except for the first module of TaL, lack cognate acyltransferase (AT) domains. Furthermore, deletion of a discrete tandem AT,encoded by taV,blocks myxovirescin production; this suggests an "in trans" mode of action. To embellish the macrocycle with methyl and ethyl moieties, assembly of the myxovirescin scaffold is proposed to switch twice from PKS to 3-hydroxy-3-methylglutaryl,CoA (HMG,CoA)-like biochemistry during biosynthesis. Disruption of the S -adenosylmethionine (SAM)-dependent methyltransferase, TaQ, shifts production toward two novel myxovirescin analogues, designated myxovirescin Qa and myxovirescin Qc. NMR analysis of purified myxovirescin Qa revealed the loss of the methoxy carbon atom. This novel analogue lacks bioactivity against E. coli. [source] Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regionsENVIRONMENTAL TOXICOLOGY, Issue 3 2005Youness Ouahid Abstract Reliable cyanotoxin monitoring in water reservoirs is difficult because of, among other reasons, unpredictable changes in cyanobacteria biomass, toxin production, and inadequate sampling frequency. Therefore, it would be useful to identify potentially microcystin-producing strains of cyanobacterial populations in field samples. With this aim, we developed a methodology to distinguish microcystin-producing from non-producing Microcystis strains by amplifying six characteristic segments of the microcystin synthetase mcy cluster, three corresponding to the nonribosomal peptide synthetase, genes mcyA, mcyB, and mcyC, and three to the polyketide synthase, genes mcyD, mcyE, and mcyG. For this purpose five new primer sets were designed and tested using purified DNA, cultured cells, and field colonies as DNA sources. Simultaneous amplification of several genes in multipex PCR reactions was performed in this study. The results obtained showed that: (i) the expected specific amplicons were obtained with all microcystin-producing strains but not with nonproducing strains; (ii) cells could be directly used as DNA templates, 2000 cells being a sufficient number in most cases; (iii) simultaneous amplification of several gene regions is feasible both with cultured cells and with field colonies. Our data support the idea that the presence of various mcy genes in Microcystis could be used as a criterion for ascribing potential toxigenicity to field strains, and the possibility of applying whole-cell assays for the simultaneous amplification of various genes may contribute significantly to simplifying toxigenicity testing. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 235,242, 2005. [source] Isolation and characterisation of a partial peptide synthetase gene from Trichoderma asperellumFEMS MICROBIOLOGY LETTERS, Issue 2 2005Chanikul Chutrakul Abstract Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a , FIX®II genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1. [source] Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector systemFEMS MICROBIOLOGY LETTERS, Issue 2 2002Sascha Doekel Abstract A major obstacle in investigating the biosynthesis of pharmacologically important peptide antibiotics is the heterologous expression of the giant biosynthetic genes. Recently, the genetically engineered strain Bacillus subtilis KE30 has been reported as an excellent surrogate host for the heterologous expression of an entire nonribosomal peptide synthetase (NRPS) gene cluster. In this study, we expand the applicability of this strain, by the development of four Escherichia coli/B. subtilis shuttle expression vectors. Comparative overproduction of hybrid NRPS proteins derived from both organisms revealed a significant beneficial effect of overproducing proteins in B. subtilis KE30 as underlined by the production of stable nondegradative proteins, as well as the formation of active phosphopantetheinylated holo-proteins. [source] A novel streptococcal integrative conjugative element involved in iron acquisitionMOLECULAR MICROBIOLOGY, Issue 5 2008Zoe Heather Summary In this study, we determined the function of a novel non-ribosomal peptide synthetase (NRPS) system carried by a streptococcal integrative conjugative element (ICE), ICESe2. The NRPS shares similarity with the yersiniabactin system found in the high-pathogenicity island of Yersinia sp. and is the first of its kind to be identified in streptococci. We named the NRPS product ,equibactin' and genes of this locus eqbA,N. ICESe2, although absolutely conserved in Streptococcus equi, the causative agent of equine strangles, was absent from all strains of the closely related opportunistic pathogen Streptococcus zooepidemicus. Binding of EqbA, a DtxR-like regulator, to the eqbB promoter was increased in the presence of cations. Deletion of eqbA resulted in a small-colony phenotype. Further deletion of the irp2 homologue eqbE, or the genes eqbH, eqbI and eqbJ encoding a putative ABC transporter, or addition of the iron chelator nitrilotriacetate, reversed this phenotype, implicating iron toxicity. Quantification of 55Fe accumulation and sensitivity to streptonigrin suggested that equibactin is secreted by S. equi and that the eqbH, eqbI and eqbJ genes are required for its associated iron import. In agreement with a structure-based model of equibactin synthesis, supplementation of chemically defined media with salicylate was required for equibactin production. [source] Nonribosomal Peptide Synthesis in Schizosaccharomyces pombe and the Architectures of Ferrichrome-Type Siderophore Synthetases in FungiCHEMBIOCHEM, Issue 4 2006Torsten Schwecke Dr. Abstract A nonribosomal peptide synthetase (NRPS) in Schizosaccharomyces pombe, which possesses an unusual structure incorporating three adenylation domains, six thiolation domains and six condensation domains, has been shown to produce the cyclohexapeptide siderophore ferrichrome. One of the adenylation domains is truncated and contains a distorted key motif. Substrate-binding specificities of the remaining two domains were assigned by molecular modelling to glycine and to N -acetyl- N -hydroxy- L -ornithine. Hexapeptide siderophore synthetase genes of Magnaporthe grisea and Fusarium graminearum were both identified and analyzed with respect to substrate-binding sites, and the predicted product ferricrocin was identified in each. A comparative analysis of these synthetase systems, including those of the basidiomycete Ustilago maydis, the homobasidiomycete Omphalotus olearius and the ascomycetes Aspergillus nidulans, Aspergillus fumigatus, Fusarium graminearum, Cochliobolus heterostrophus, Neurospora crassa and Aureobasidium pullulans, revealed divergent domain compositions with respect to their number and positioning, although all produce similar products by iterative processes. A phylogenetic analysis of both NRPSs and associated L - N5 -ornithine monooxygenases revealed that ferrichrome-type siderophore biosynthesis has coevolved in fungi with varying in trans interactions of NRPS domains. [source] Towards clarification of the biological role of microcystins, a family of cyanobacterial toxinsENVIRONMENTAL MICROBIOLOGY, Issue 4 2007Daniella Schatz Summary Microcystins constitute a serious threat to the quality of drinking water worldwide. These protein phosphatase inhibitors are formed by various cyanobacterial species, including Microcystis sp. Microcystins are produced by a complex microcystin synthetase, composed of peptide synthetases and polyketide synthases, encoded by the mcyA-J gene cluster. Recent phylogenetic analysis suggested that the microcystin synthetase predated the metazoan lineage, thus dismissing the possibility that microcystins emerged as a means of defence against grazing, and their original biological role is not clear. We show that lysis of Microcystis cells, either mechanically or because of various stress conditions, induced massive accumulation of McyB and enhanced the production of microcystins in the remaining Microcystis cells. A rise in McyB content was also observed following exposure to microcystin or the protease inhibitors micropeptin and microginin, also produced by Microcystis. The extent of the stimulation by cell extract was strongly affected by the age of the treated Microcystis culture. Older cultures, or those recently diluted from stock cultures, hardly responded to the components in the cell extract. We propose that lysis of a fraction of the Microcystis population is sensed by the rest of the cells because of the release of non-ribosomal peptides. The remaining cells respond by raising their ability to produce microcystins thereby enhancing their fitness in their ecological niche, because of their toxicity. [source] Construction of hybrid peptide synthetases for the production of ,- l -aspartyl- l -phenylalanine, a precursor for the high-intensity sweetener aspartameFEBS JOURNAL, Issue 22 2003Thomas Duerfahrt Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide ,- l -aspartyl- l -phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener ,- l -aspartyl- l -phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected ,-Asp-Phe and the by-product ,-Asp-Phe. Dependent on the turnover rates ranging from 0.01,0.7 min,1, the amount of ,-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of ,-Asp-Phe to ,-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases. [source] Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetasesFEMS MICROBIOLOGY LETTERS, Issue 1 2005Niran Roongsawang Abstract Condensation (C) domains in the nonribosomal peptide synthetases are capable of catalyzing peptide bond formation between two consecutively bound various amino acids. C-domains coincide in frequency with the number of peptide bonds in the product peptide. In this study, a phylogenetic approach was used to investigate structural diversity of bacterial C-domains. Phylogenetic trees show that the C-domains are clustered into three functional groups according to the types of substrate donor molecules. They are l -peptidyl donors, d -peptidyl donors, and N -acyl donors. The fact that C-domain structure is not subject to optical configuration of amino acid acceptor molecules supports an idea that the conversion from l to d -form of incorporating amino acid acceptor occurs during or after peptide bond formation. l -peptidyl donors and d -peptidyl donors are suggested to separate before separating the lineage of Gram-positive and Gram-negative bacteria in the evolution process. [source] Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector systemFEMS MICROBIOLOGY LETTERS, Issue 2 2002Sascha Doekel Abstract A major obstacle in investigating the biosynthesis of pharmacologically important peptide antibiotics is the heterologous expression of the giant biosynthetic genes. Recently, the genetically engineered strain Bacillus subtilis KE30 has been reported as an excellent surrogate host for the heterologous expression of an entire nonribosomal peptide synthetase (NRPS) gene cluster. In this study, we expand the applicability of this strain, by the development of four Escherichia coli/B. subtilis shuttle expression vectors. Comparative overproduction of hybrid NRPS proteins derived from both organisms revealed a significant beneficial effect of overproducing proteins in B. subtilis KE30 as underlined by the production of stable nondegradative proteins, as well as the formation of active phosphopantetheinylated holo-proteins. [source] Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2009Marco Kruijt Abstract Aims:, Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping-off of cucumber evaluated. Methods and Results:, The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping-off of cucumber, since both wild type strain 267 and its biosurfactant-deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC-MS and MS-MS analyses. Conclusions:, The biosurfactants produced by Ps. putida 267 were identified as putisolvin-like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping-off of cucumber, but the lipopeptide surfactants are not involved in disease suppression. Significance and Impact of the Study:,Pseudomonas putida 267 suppresses Phy. capsici damping-off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin-like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy. capsici and colonization of cucumber roots by Ps. putida 267. These results suggest that Ps. putida 267 employs other, yet uncharacterized, mechanisms to suppress Phy. capsici. [source] Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall constructionMOLECULAR PLANT PATHOLOGY, Issue 1 2007KWANG-HYUNG KIM SUMMARY Alternaria brassicicola is a necrotrophic pathogen causing black spot disease on virtually all cultivated Brassica crops worldwide. In many plant pathosystems fungal secondary metabolites derived from non-ribosomal peptide synthetases (NPSs) are phytotoxic virulence factors or are antibiotics thought to be important for niche competition with other micro-organisms. However, many of the functions of NPS genes and their products are largely unknown. In this study, we investigated the function of one of the A. brassicicola NPS genes, AbNPS2. The predicted amino acid sequence of AbNPS2 showed high sequence similarity with A. brassicae, AbrePsy1, Cochliobolus heterostrophus, NPS4 and a Stagonospora nodorum NPS. The AbNPS2 open reading frame was predicted to be 22 kb in length and encodes a large protein (7195 amino acids) showing typical NPS modular organization. Gene expression analysis of AbNPS2 in wild-type fungus indicated that it is expressed almost exclusively in conidia and conidiophores, broadly in the reproductive developmental phase. AbNPS2 gene disruption mutants showed abnormal spore cell wall morphology and a decreased hydrophobicity phenotype. Conidia of abnps2 mutants displayed an aberrantly inflated cell wall and an increase in lipid bodies compared with wild-type. Further phenotypic analyses of abnps2 mutants showed decreased spore germination rates both in vitro and in vivo, and a marked reduction in sporulation in vivo compared with wild-type fungus. Moreover, virulence tests on Brassicas with abnps2 mutants revealed a significant reduction in lesion size compared with wild-type but only when aged spores were used in experiments. Collectively, these results indicate that AbNPS2 plays an important role in development and virulence. [source] Rational Manipulation of Carrier-Domain Geometry in Nonribosomal Peptide SynthetasesCHEMBIOCHEM, Issue 6 2007Ye Liu Changing the assembly line. Nonribosomal peptide synthetases are multidomain enzyme assemblies responsible for the biosynthesis of a wide range of therapeutically important natural products. Here we describe an approach to construct stable, domain-specific conjugates of nonribosomal peptide synthetases by using synthetic analogues of coenzyme A. [source] Type II Thioesterase Restores Activity of a NRPS Module Stalled with an Aminoacyl-S-enzyme that Cannot Be ElongatedCHEMBIOCHEM, Issue 9 2004Ellen Yeh Fidelity and efficiency. Nonribosomal peptide synthetases, which contain domains for the activation (A), thiolation (T), and condensation (C) of amino acids (AA), are high-efficiency, high-fidelity assembly lines for synthesizing peptide natural products. Errors in a single step can have serious consequences for product formation. Type II thioesterases (TEII) might play a critical role in ensuring efficiency and accuracy in these systems, essential features in any attempt to engineer NRPSs to produce novel products. [source] Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacteriumENVIRONMENTAL MICROBIOLOGY, Issue 7 2007Barbara Schellenberg Summary Glidobactins (syn. cepafungins) are a family of structurally related cytotoxic compounds that were isolated from the soil bacterial strain K481-B101 (ATCC 53080; DSM 7029) originally assigned to Polyangium brachysporum and, independently, from an undefined species related to Burkholderia cepacia. Glidobactins are acylated tripeptide derivatives that contain a 12-membered ring structure consisting of the two unique non-proteinogenic amino acids erythro -4-hydroxy- l -lysine and 4(S)-amino-2(E)-pentenoic acid. Here we report the cloning and functional analysis of a gene cluster (glbA,glbH) involved in glidobactin synthesis from K481-B101, which according to its 16S rRNA sequence belongs to the Burkholderiales. The putative encoded proteins include a mixed non-ribosomal peptide/polyketide synthetase whose structure and architecture allowed to build a biosynthetic pathway model explaining the biosynthesis of the unique peptide part of glidobactins. Intriguingly, among the more than 600 bacterial strains whose genome sequence is currently available, homologous gene clusters were found in Burkholderia pseudomallei, the causing agent of melioidosis, and in the insect pathogen Photorhabdus luminescens, strongly suggesting that these organisms are capable to synthesize compounds similar to glidobactins. In addition, a glb gene cluster that was inactivated by transposon-mediated rearrangements was also present in Burkholderia mallei, a very close relative of B. pseudomallei and the causing agent of glanders in horse-like animals. [source] |