Home About us Contact | |||
Peptide Scaffold (peptide + scaffold)
Selected AbstractsUltra-Stable Peptide Scaffolds for Protein Engineering,Synthesis and Folding of the Circular Cystine Knotted Cyclotide Cycloviolacin O2CHEMBIOCHEM, Issue 1 2008Teshome Leta Aboye Abstract The cyclic cystine knot motif, as defined by the cyclotide peptide family, is an attractive scaffold for protein engineering. To date, however, the utilisation of this scaffold has been limited by the inability to synthesise members of the most diverse and biologically active subfamily, the bracelet cyclotides. This study describes the synthesis and first direct oxidative folding of a bracelet cyclotide,cycloviolacin O2,and thus provides an efficient method for exploring the most potent cyclic cystine knot peptides. The linear chain of cycloviolacin O2 was assembled by solid-phase Fmoc peptide synthesis and cyclised by thioester-mediated native chemical ligation, and the inherent difficulties of folding bracelet cyclotides were successfully overcome in a single-step reaction. The folding pathway was characterised and was found to include predominating fully oxidised intermediates that slowly converted to the native peptide structure. [source] A Tripodal Peptidic Titanium Phosphonate as a Homochiral Porous Solid Medium for the Heterogeneous Enantioselective Hydration of EpoxidesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2010Anat Milo Abstract A porous, homochiral titanium-phosphonate material based on a tripodal peptide scaffold was used as a heterogeneous reaction medium for the enantioselective hydration (>99%) of styrene oxide. This titanium-phosphonate material, which was shown to contain confined chiral spaces, was prepared by polymerization of L -leucine onto a tris(2-aminoethyl)amine initiator, followed by capping with phosphonate groups and completed by non-aqueous condensation with titanium isopropoxide. Circular dichroism confirmed that the peptide tethers yielded a secondary structure. X-ray powder diffraction and transmission electron microscopy supported by a semi-empirical model showed the likely formation of a porous, lamellar material that was quantified by nitrogen adsorption. [source] Multipotency of clonal cells derived from swine periodontal ligament and differential regulation by fibroblast growth factor and bone morphogenetic proteinJOURNAL OF PERIODONTAL RESEARCH, Issue 2 2009K. Shirai Background and Objective:, A blood supply is indispensable for the regeneration of damaged or lost periodontal ligament (PDL) tissue. Mesenchymal stem cell-like activity of cells derived from the PDL has been identified by their capacity to form fibrous and osseous tissue and cementum. However, it remains to be clarified whether the cells have an ability to build the capillary network of blood vessels. This study evaluated the potential of cells derived from the PDL to construct a blood vessel-like structure and examined how growth factors controlled the multipotency of the cells. Material and Methods:, The ability of a swine PDL fibroblast cell line, TesPDL3, to construct a blood vessel-like structure was evaluated on and in the self-assembling peptide scaffold, PuraMatrixTM. In addition, the ability of the cells to form mineralized nodules was evaluated on type I collagen-coated plastic plates. In some cases, fibroblast growth factor (FGF)-2 and bone morphogenetic protein (BMP)-2 were added to these cultures. The status of the expression of vascular and osteoblastic cell-specific markers in the cells was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence analyses. Results:, The TesPDL3 cells not only formed mineralized nodules in response to BMP-2 stimulation but also constructed tube-like structures in response to FGF-2 stimulation. Intriguingly, FGF-2 inhibited the BMP-2-induced formation of mineralized nodules. Conversely, BMP-2 inhibited the FGF-2-induced formation of tube-like structures. Conclusion:, Periodontal ligament fibroblasts have the potential to differentiate not only into osteoblastic but also into vascular cell lineages. The destiny of the cells was reciprocally regulated by BMP-2 and FGF-2. [source] Influence of a Self-Assembling Peptide, RADA16, Compared with Collagen I and Matrigel on the Malignant Phenotype of Human Breast-Cancer Cells in 3D Cultures and in vivoMACROMOLECULAR BIOSCIENCE, Issue 5 2009Kun Mi Abstract Cancer-cell phenotype is not only the result of malignant progression, but also dependent on the microenvironment surrounding them, including influences from the extracellular matrix and its structural properties. We have investigated the influence of the nanofiber matrix of the self-assembling peptide, RADA16, in comparison with collagen I and Matrigel on the malignant phenotype of the human breast-cancer cell, MDA-MB-231, in 3D cultures, including the morphology, survival, proliferation rate, migration potential and the effect of these matrices on the malignancy of the cancer cells in vivo. Our data indicate that these tumor cells change their morphology in response to the different 3D matrix in vitro cultures and the RADA16 self-assembling peptide scaffold mimics an extracellular matrix and could effectively reduce the malignant phenotype of the tumor cells in vitro and in vivo. [source] A Gadolinium-Binding Cyclodecapeptide with a Large High-Field Relaxivity Involving Second-Sphere WaterCHEMISTRY - A EUROPEAN JOURNAL, Issue 29 2009Célia Abstract A new cyclodecapeptide incorporating two prolylglycine sequences as ,-turn inducers and bearing four side chains with acidic carboxyl groups for cation complexation has been prepared. Structural analysis in water by 1H,NMR spectroscopy and CD shows that this template adopts a conformation suitable for the complexation of lanthanide ions Ln3+, with its carboxyl groups oriented on the same face of the peptide scaffold. Luminescence titrations show that mononuclear Ln,PA complexes are formed with apparent stability constants of log,,110,6.5 (pH,7). The high-field water relaxivity values arising from the Gd,PA complex at 200,500,MHz have been interpreted with molecular parameters determined independently. The experimentally determined water relaxivities are undoubtedly 30,% higher than the expected values for this complex with two inner-sphere (IS) water molecules and a medium-range rotational correlation time (,R=386,ps (±10,%)). This led us to propose the existence of a large second-sphere (2S) contribution to the relaxivity caused by the interaction of water molecules with the hydrophilic peptide ligand by hydrogen-bonding. [source] |