Home About us Contact | |||
Peptide Mass Fingerprinting (peptide + mass_fingerprinting)
Selected AbstractsMouse cytosolic sulfotransferase SULT2B1b interacts with cytoskeletal proteins via a proline/serine-rich C-terminusFEBS JOURNAL, Issue 18 2010Katsuhisa Kurogi Cytosolic sulfotransferase (SULT) SULT2B1b had previously been characterized as a cholesterol sulfotransferase. Like human SULT2B1, mouse SULT2B1b contains a unique, 31 amino acid C-terminal sequence with a proline/serine-rich region, which is not found in members of other SULT families. To gain insight into the functional relevance of this proline/serine-rich region, we constructed a truncated mouse SULT2B1b lacking the 31 C-terminal amino acids, and compared it with the wild-type enzyme. Enzymatic characterization indicated that the catalytic activity was not significantly affected by the absence of those C-terminal residues. Glutathione S -transferase pulldown assays showed that several proteins interacted with mouse SULT2B1b specifically through this C-terminal proline/serine-rich region. Peptide mass fingerprinting revealed that of the five SULT2B1b-binding proteins analyzed, three were cytoskeletal proteins and two were cytoskeleton-binding molecular chaperones. Furthermore, wild-type mouse SULT2B1b, but not the truncated enzyme, was associated with the cytoskeleton in experiments with a cytoskeleton-stabilizing buffer. Collectively, these results suggested that the unique, extended proline/serine-rich C-terminus of mouse SULT2B1b is important for its interaction with cytoskeletal proteins. Such an interaction may allow the enzyme to move along microfilaments such as actin filaments, and catalyze the sulfation of hydroxysteroids, such as cholesterol and pregnenolone, at specific intracellular locations. Structured digital abstract ,,MINT-7975854: Sult2B1b (uniprotkb:O35400) physically interacts (MI:0914) with Myosin-Ic (uniprotkb:Q9WTI7), Alpha-actinin-1 (uniprotkb:Q7TPR4), Alpha-actinin-4 (uniprotkb:P57780), HSP 90-beta (uniprotkb:P11499), Hsc70, (uniprotkb:P63017), Beta-actin (uniprotkb:P60710) and Gamma-actin (uniprotkb:P63260) by pull down (MI:0096) [source] Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hübner)ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2010Li-Zhen Chen Abstract Aminopeptidase N (APN) and cadherin-like proteins have been previously identified as Cry1Ac-binding proteins in Helicoverpa armigera (Hübner). In this study, a proteomic approach was used to identify novel Cry1Ac-binding proteins in H. armigera. Brush border membrane vesicles (BBMV) of H. armigera were extracted and separated by two-dimensional gel electrophoresis (2-DE). Cry1Ac-binding proteins were detected using antisera against Cry1Ac. Peptide mass fingerprinting (PMF) was used to identify Cry1Ac-binding proteins. In total, four proteins were identified as candidate Cry1Ac-binding proteins in H. armigera: vacuolar ATP synthase (V-ATPase) subunit B, actin, heat shock cognate protein (HSCP), and a novel protein. © 2009 Wiley Periodicals, Inc. [source] Effect of celecoxib on cyclooxygenase-2 expression and possible variants in a patient with Barrett's esophagusDISEASES OF THE ESOPHAGUS, Issue 3 2007G. A. Jacobson SUMMARY., Cyclooxygenase-2 (COX-2) expression is increased in metaplastic and dysplastic Barrett's esophageal epithelium and it is thought that selective COX-2 inhibitors could offer hope as chemoprevention therapy. The aim of the study was to investigate the in vivo effect of celecoxib on COX-2 expression in patients with Barrett's esophagus and no recent history of non-steroidal anti-inflammatory drug use. Endoscopic mucosal biopsy specimens were collected at baseline and after 28 days of therapy in a patient treated with celecoxib 200 mg twice daily. Samples were analyzed for COX-2 expression by immunoblot analysis with chemiluminescence detection. COX-2 expression was found to decline 20% and 44% at two different biopsy sites compared to the baseline sample. Longer exposures revealed a number of previously unidentified proteins above and below the 67 kDa COX-2 protein including 38 kDa and 45 kDa proteins which were present only at study completion consistent with up-regulation after celecoxib therapy. Further investigations of the 38 kDa and 45 kDa proteins were undertaken using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with immunoblot and MALDI-TOF (matrix assisted laser desorption ionization , time of flight) analysis but no matches were found and results were inconclusive. Unmatched masses from MALDI-TOF peptide mass fingerprinting were compared with human COX-2 (67 kDa) and COX-2b (39 kDa) using unspecific cleavage. Peptide sequence homology with COX-2 and COX-2b was found for a length of 19 amino acids. Based on immunodetection, molecular weight and equivical MALDI-TOF results, one of these up-regulated proteins may be COX-2b. [source] Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2ELECTROPHORESIS, Issue 14 2006Richard C. Barry Abstract A proteomic map of Sulfolobus solfataricus,P2, an archaeon that grows optimally at 80°C and pH,3.2, was developed using high-resolution 2-DE and peptide mass fingerprinting. A total of 867,protein spots (659,aqueous Tris-soluble spots and 208,aqueous Tris-insoluble) were mapped over IPG,3,10, 4,7, and 6,11, with second-dimensional gels made of 8,18%,polyacrylamide. Three hundred and twenty-four different gene products were represented by the 867,spots, with 274,gene products being identified in the Tris-soluble fractions and 100,gene products in the Tris-insoluble portion. Fifty gene products were found on gels from both fractions. Additionally, an average of 1.50 ± 0.12 isoforms/protein was identified. This mapping study confirmed the expression of proteins involved in numerous metabolic, transport, energy production, nucleic acid replication, translation, and transcription pathways. Of particular interest, phosphoenolpyruvate carboxykinase,(SSO2537) was detected even though the pathway for gluconeogenesis is unknown for this archaeon. Tris-soluble fractions contained many cytosolic proteins while Tris-insoluble fractions contained many membrane-associated proteins, including ABC transporters and an ATP synthase. This study provides an optimized 2-DE approach for investigating the biochemical pathways and post-translational modifications employed by Sulfolobus to survive in its extreme environment. [source] Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substratesFEBS JOURNAL, Issue 5 2005Linda Nováková Searching the genome sequence of Streptococcus pneumoniae revealed the presence of a single Ser/Thr protein kinase gene stkP linked to protein phosphatase phpP. Biochemical studies performed with recombinant StkP suggest that this protein is a functional eukaryotic-type Ser/Thr protein kinase. In vitro kinase assays and Western blots of S. pneumoniae subcellular fractions revealed that StkP is a membrane protein. PhpP is a soluble protein with manganese-dependent phosphatase activity in vitro against a synthetic substrate RRA(pT)VA. Mutations in the invariant aspartate residues implicated in the metal binding completely abolished PhpP activity. Autophosphorylated form of StkP was shown to be a substrate for PhpP. These results suggest that StkP and PhpP could operate as a functional pair in vivo. Analysis of phosphoproteome maps of both wild-type and stkP null mutant strains labeled in vivo and subsequent phosphoprotein identification by peptide mass fingerprinting revealed two possible substrates for StkP. The evidence is presented that StkP can phosphorylate in vitro phosphoglucosamine mutase GlmM which catalyzes the first step in the biosynthetic pathway leading to the formation of UDP- N -acetylglucosamine, an essential common precursor to cell envelope components. [source] 17, -Hydroxysteroid dehydrogenase type 11 is a major peroxisome proliferator-activated receptor ,-regulated gene in mouse intestineFEBS JOURNAL, Issue 20 2004Kiyoto Motojima In order to study the role of peroxisome proliferator-activated receptor , in mouse intestine, its agonist-induced proteins were identified by peptide mass fingerprinting followed by Northern blot analysis using their cDNAs. One of the most remarkably induced proteins was identified as 17,-hydroxysterol dehydrogenase type 11. Its very rapid induction by various agonists was most efficient in intestine and then in liver. These findings together with recently reported results showing the enzyme family's wide substrate spectrum, including not only glucocorticoids and sex steroids but also bile acids, fatty acids and branched chain amino acids, suggest new roles for both peroxisome proliferator-activated receptor , and 17,-hydroxysterol dehydrogenase type 11 in lipid metabolism and/or detoxification in the intestine. [source] Detection of a homotetrameric structure and protein,protein interactions of Paracoccidioides brasiliensis formamidase lead to new functional insightsFEMS YEAST RESEARCH, Issue 1 2010Clayton Luiz Borges Abstract Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic mycosis in Latin America. Formamidases hydrolyze formamide, putatively plays a role in fungal nitrogen metabolism. An abundant 45-kDa protein was identified as the P. brasiliensis formamidase. In this study, recombinant formamidase was overexpressed in bacteria and a polyclonal antibody to this protein was produced. We identified a 180-kDa protein species reactive to the antibody produced in mice against the P. brasiliensis recombinant purified formamidase of 45 kDa. The 180-kDa purified protein yielded a heat-denatured species of 45 kDa. Both protein species of 180 and 45 kDa were identified as formamidase by peptide mass fingerprinting using MS. The identical mass spectra generated by the 180 and the 45-kDa protein species indicated that the fungal formamidase is most likely homotetrameric in its native conformation. Furthermore, the purified formamidase migrated as a protein of 191 kDa in native polyacrylamide gel electrophoresis, thus revealing that the enzyme forms a homotetrameric structure in its native state. This enzyme is present in the fungus cytoplasm and the cell wall. Use of a yeast two-hybrid system revealed cell wall membrane proteins, in addition to cytosolic proteins interacting with formamidase. These data provide new insights into formamidase structure as well as potential roles for formamidase and its interaction partners in nitrogen metabolism. [source] Comparative proteomic analysis of primary mouse liver c-Kit,(CD45/TER119), stem/progenitor cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2007Yu-Fei He Abstract Liver stem/progenitor cells play a key role in liver development and maybe also in liver cancer development. In our previous study a population of c-Kit,(CD45/TER119), liver stem/progenitor cells in mouse fetal liver, was successfully sorted with large amount (106,107) by using immuno-magnetic microbeads. In this study, the sorted liver stem/progenitor cells were used for proteomic study. Proteins of the sorted liver stem/progenitor cells and unsorted fetal liver cells were investigated using two-dimensional electrophoresis. A two-dimensional proteome map of liver stem/progenitor cells was obtained for the first time. Proteins that exhibited significantly upregulation in liver stem/progenitor cells were identified by peptide mass fingerprinting and peptide sequencing. Nineteen protein spots corresponding to 12 different proteins were identified as showing significant upregulation in liver stem/progenitor cells and seem to play important roles in such cells in cell metabolism, cell cycle regulation, and stress. An interesting finding is that most of the upregulated proteins were overexpressed in various cancers (11 of 12, including 6 in human hepatocellular carcinoma (HCC)) and involved in cancer development as reported in previous studies. Some of the identified proteins were validated by real-time PCR, Western blotting, and immunostaining. Taken together, the data presented provide a significant new protein-level insight into the biology of liver stem/progenitor cells, a key population of cells that might be also involved in liver cancer development. J. Cell. Biochem. 102: 936,946, 2007. © 2007 Wiley-Liss, Inc. [source] Proteomic Alterations of Antarctic Ice Microalga Chlamydomonas sp.JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2006Under Low-Temperature Stress Abstract Antarctic ice microalga can survive and thrive in cold channels or pores in the Antarctic ice layer. In order to understand the adaptive mechanisms to low temperature, in the present study we compared two-dimensional polyacrylamide gel electrophoresis (2-DE) profiles of normal and low temperature-stressed Antarctic ice microalga Chlamydomonas sp. cells. In addition, new protein spots induced by low temperature were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and database searching. Well-resolved and reproducible 2-DE patterns of both normal and low temperature-stressed cells were acquired. A total of 626 spots was detected in control cells and 652 spots were detected in the corresponding low temperature-stressed cells. A total of 598 spots was matched between normal and stressed cells. Two newly synthesized proteins (a and b) in low temperature-stressed cells were characterized. Protein spot A (53 kDa, pI 6.0) was similar to isopropylmalate/homocitrate/citramalate synthases, which act in the transport and metabolism of amino acids. Protein spot b (25 kDa, pI 8.0) was related to glutathione S -transferase, which functions as a scavenger of active oxygen, free radicals, and noxious metabolites. The present study is valuable for the application of ice microalgae, establishing an ice microalga Chlamydomonas sp. proteome database, and screening molecular biomarkers for further studies. (Managing editor: Li-Hui Zhao) [source] Protein identification by peptide mass fingerprinting and peptide sequence tagging with alternating scans of nano-liquid chromatography/infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2003Toshiyuki Kosaka Abstract We have developed a method for protein identification with peptide mass fingerprinting and sequence tagging using nano liquid chromatography (LC)/Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). To achieve greater sensitivity, a nanoelectrospray (nano-ES) needle packed with reversed-phase medium was used and connected to the nano-ES ion source of the FTICR mass spectrometer. To obtain peptide sequence tag information, infrared multiphoton dissociation (IRMPD) was carried out in nano-LC/FTICR-MS analysis. The analysis involves alternating nano-ES/FTICR-MS and nano-ES/IRMPD-FTICR-MS scans during a single LC run, which provides sets of parent and fragment ion masses of the proteolytic digest. The utility of this alternating-scan nano-LC/IRMPD-FTICR-MS approach was evaluated by using bovine serum albumin as a standard protein. We applied this approach to the protein identification of rat liver diacetyl-reducing enzyme. It was demonstrated that this enzyme was correctly identified as 3-,-hydroxysteroid dehydrogenase by the alternating-scan nano-LC/IRMPD-FTICR-MS approach with accurate peptide mass fingerprinting and peptide sequence tagging. Copyright © 2003 John Wiley & Sons, Ltd. [source] Isolation and characterization of antimicrobial proteins and peptide from chicken liverJOURNAL OF PEPTIDE SCIENCE, Issue 6 2007Guan-Hong Li Abstract Endogenous antimicrobial peptides and proteins are crucial components of the innate immune system and play an essential role in the defense against infection. Antimicrobial activity was detected in the acid extract of livers harvested from healthy adult White Leghorn hens, Gallus gallus. Two antimicrobial proteins and one antimicrobial polypeptide were isolated from the liver extract by cation-exchange and gel filtration chromatography, followed by two-step reverse-phase high-performance liquid chromatography (RP-HPLC). These antimicrobial components were identified as histones H2A and H2B.V, and histone H2B C -terminal fragment using peptide mass fingerprinting and partial sequencing by tandem nanoelectrospray mass spectrometry. The proteins and the peptide identified in the present study, which exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, were thermostable and showed salt-resistant activity. The antimicrobial properties of histones and histone fragment in chicken provide further evidence that histones, in addition to their role in nucleosome formation, may play an important role in innate host defense against intracellular or extracellular microbe invasion in a wide range of animal species. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] 71 Proteomics of haematococcus pluvialis: new opportunities for study of genomics of a non-sequenced speciesJOURNAL OF PHYCOLOGY, Issue 2003Q. Hu The green alga, Haematococcus pluvialis, has become a model organism for commercial production of the high-value carotenoid astaxanthin. H. Pluvialis has also drawn significant scientific attention because fundamental biological questions relating to the massive cellular accumulation of astaxanthin have to be addressed in order to improve the yield and quality of the algal biomass. However, research has been impeded by the lack of molecular background information on this non-sequenced species. A combination of classical biochemistry with a state-of-the-art proteomic approach was used to address these questions. This was possible by taking advantage of information already available for homologous genes/gene-products in organisms whose genomes have been sequenced. The approach involved isolation of subsets of the proteome from subcellular compartments/organelles of an organism by one- or two-dimensional electrophoresis (1-DE or 2-DE) and their identification by N-terminal sequencing and peptide mass fingerprinting (PMF), involving matrix-assisted laser desorption/ionization and time-of-flight (MALDI-TOF) mass spectrometry coupled with bioinformatics. Based upon the information obtained from the combined methods, expression and physiological functions of specific genes/encoded proteins may be deduced. Examples include profiling of cell wall proteins, biogenesis and protein composition of lipid bodies, and expression patterns of soluble proteins under stress conditions. Advantages and limitations of the method for non-sequenced organisms and for cross-species protein identification will also be discussed. [source] Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometryMASS SPECTROMETRY REVIEWS, Issue 5 2007Julie Hardouin Abstract Proteins from biological samples are often identified by mass spectrometry (MS) with the two following "bottom-up" approaches: peptide mass fingerprinting or peptide sequence tag. Nevertheless, these strategies are time-consuming (digestion, liquid chromatography step, desalting step), the N - (or C -) terminal information often lacks and post-translational modifications (PTMs) are hardly observed. The in-source decay (ISD) occurring in a matrix assisted laser desorption/ionization (MALDI) source appears an interesting analytical tool to obtain N -terminal sequence, to identify proteins and to characterize PTMs by a "top-down" strategy. The goal of this review deals with the usefulness of the ISD technique in MALDI source in proteomics fields. In the first part, the ISD principle is explained and in the second part, the use of ISD in proteomic studies is discussed for protein identification and sequence characterization. © 2007 Wiley Periodicals, Inc., Mass Spec Rev 26:672,682, 2007 [source] Proteomic analysis of the pH response in the fungal pathogen Candida glabrataPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2008Pia Schmidt Abstract Micro-organisms must adapt to environmental change to survive, and this is particularly true for fungal pathogens such as Candida glabrata. C. glabrata is found both in the environment and in diverse niches in its human host. The ambient pH of these niches varies considerably, and therefore we have examined the response of C. glabrata to changes in ambient pH using a proteomic approach. Proteins expressed in C. glabrata cells growing at pH,4.0, 7.4 or 8.0 were compared by 2-DE, and 174 spots displaying reproducible and statistically significant changes in expression level were identified by peptide mass fingerprinting, thereby extending our 2-DE map of the C. glabrata proteome to a total of 272 identified spots. Proteins involved in glucose metabolism, the TCA cycle, respiration and protein synthesis were expressed at lower levels during growth at pH,7.4 and/or 8.0, whereas proteins involved in stress responses and protein catabolism were expressed at higher levels under these alkaline conditions. Our data suggest that C. glabrata perceives low pH as less stressful than higher pH. This contrasts with another opportunistic fungal pathogen of humans, Candida albicans [source] An improved method of sample preparation on AnchorChipÔ targets for MALDI-MS and MS/MS and its application in the liver proteome projectPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2007Xumin Zhang Abstract An improved method for sample preparation for MALDI-MS and MS/MS using AnchorChipÔ targets is presented. The method, termed the SMW method (sample, matrix wash), results in better sensitivity for peptide mass fingerprinting as well as for sequencing by MS/MS than previously published methods. The method allows up-concentration and desalting directly on the mass spectrometric target and should be amenable for automation. A draw back caused by extensive oxidation of methionine and tryptophan in the SMW method can be alleviated by the addition of n-octyl glucopyranoside and DTT to the sample solution. The method was validated for protein identification from a 2-DE based liver proteome study. The SMW method resulted in identification of many more proteins and in most cases with a better score than the previously published methods. [source] Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentialsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2004Shi-Jian Ding Abstract To better understand the mechanism underlying hepatocellular carcinoma (HCC) metastasis and to search for potential markers for HCC prognosis, differential proteome analysis on two HCC cell strains with high and low metastatic potentials, MHCC97-H and MHCC97-L, was conducted using two-dimensional (2-D) gel electrophoresis followed by matrix-assisted laser desorption/time of flight mass spectrometry and liquid chromatography ion trap mass spectrometry. Image analysis of silver-stained 2-D gels revealed that 56 protein spots showed significant differential expression in MHCC97-H and MHCC97-L cells (Student's t -test, P < 0.05) and 4 protein spots were only detected in MHCC97-H cells. Fourteen protein spots were further identified using in-gel tryptic digestion, peptide mass fingerprinting and tandem mass spectrometry. The expressions of pyruvate kinase M2, ubiquitin carboxy-terminal hydrolase L1, laminin receptor 67 kDa, S100 calcium-binding protein A4, thioredoxin and cytokeratin 19 were elevated in MHCC97-H cells. However, manganese superoxide dismutase, calreticulin precursor, cathepsin D, lactate dehydrogenase B, non-metastatic cell protein 1, cofilin 1 and calumenin precursor were down-regulated in MHCC97-H cells. Intriguingly, most of these identified proteins have been reported to be associated with tumor metastasis. The functional implications of alterations in the levels of these proteins are discussed. [source] Transforming growth factor-,1-regulated proteins in human endothelial cells identified by two-dimensional gel electrophoresis and mass spectrometryPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2004Marta Lomnytska Abstract Transforming growth factor-, (TGF,) is a potent regulator of angiogenesis affecting proliferation, differentiation and migration of endothelial cells. The effect of TGF, on endothelial cells depends on the origin of the cells and on the experimental conditions. Global analysis of TGF, signalling is expected to unveil mechanisms of this variability and identify novel targets of the growth factor. Here, we report proteome profiling of human microvascular endothelial cells obtained from dermis, which were treated with TGF,1 and compared to nontreated cells. We identified 54 proteins affected by TGF,1 using two-dimensional gel electrophoresis and peptide mass fingerprinting. Thirteen of the identified proteins are involved in various signalling processes. Seven proteins are involved in cytoskeleton rearrangements and six are involved in regulation of metabolism. Ten proteins were identical to predicted hypothetical proteins with no assigned functions. In agreement with the effect of TGF,1 on components of the cytoskeleton, TGF,1 induces actin cytoskeleton rearrangements. TGF,1 also affected expression of E2F6, p57Kip2, G(q),, hnRNP A1 and myosin light chain proteins as shown by immunoblotting. Down-regulation of the transcriptional repressor E2F6 by TGF,1 correlated with a weak growth-inhibitory activity of TGF,1 on HMVEC-d cells. Twenty-five of the identified proteins have not previously been described as being regulated by TGF,1, providing new insights into TGF,1 signalling in endothelial cells. [source] Proteome characterization of human T helper 1 and 2 cellsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2004Kirsi Rautajoki Abstract T helper (Th) cells can be polarized into two different main subtypes, Th1 and Th2 cells. Their activation is linked to the eradication of different pathogens and to dissimilar immunological dysfunctions, which implies differences also in their protein expression patterns. To identify these differences, CD4+ T cells were isolated from human cord blood, polarized in vitro to Th1 and Th2 and activated via CD3 and CD28. Cells were lysed, soluble proteins were separated with two-dimensional electrophoresis and differing protein spots were identified with peptide mass fingerprinting. The expression of 14 proteins differed in Th1 and Th2 cells after both 7 and 14 days of polarization. Twelve of the proteins could be identified, most of which are new in this context. Two proteins were differentially modified in the two cell types. Especially, N -terminal acetylation of cyclophilin A was stronger in Th1 than in Th2 cells. To compare the RNA and the protein levels of the identified genes, mRNA expression was measured with Affymetrix oligonucleotide microarrays (HG-U133A). The mRNA and protein expression level correlated only in six cases out of eleven, which highlights the complementary roles that proteomics and transcriptomics have in the elucidation of biological phenomena. [source] Establishment of a two-dimensional electrophoresis map for Neospora caninum tachyzoites by proteomicsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2003Eung Goo Lee Abstract Expressed proteins and antigens from Neospora caninum tachyzoites were studied by two-dimensional gel electrophoresis and immunoblot analysis combined with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Thirty-one spots corresponding to 20 different proteins were identified from N. caninum tachyzoites by peptide mass fingerprinting. Six proteins were identified from a N. caninum database (NTPase, 14-3-3 protein homologue, NcMIC1, NCDG1, NcGRA1 and NcGRA2), and 11 proteins were identified in closely related species using the T. gondii database (HSP70, HSP60, pyruvate kinase, tubulin ,- and ,-chain, putative protein disulfide isomerase, enolase, actin, fructose-1,6-bisphosphatase, lactate dehydrogenase and glyceradehyde-3-phosphate dehydrogenase). One hundred and two antigen spots were observed using pH 4,7 IPG strips on immunoblot profiles. Among them, 17 spots corresponding to 11 antigenic proteins were identified from a N. caninum protein map. This study involved the construction of in-depth protein maps for N. caninum tachyzoites, which will be of value for studies of its pathogenesis, drug and vaccine development, and phylogenetic studies. [source] Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovaniPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2003Meike Bente Abstract In order to proceed through their life cycle, protozoan parasites of the genus Leishmania cycle between sandflies and mammals. This change of environment correlates with the differentiation from the promastigote stage (insect form) to the amastigote stage (intracellular mammalian form). The molecular basis underlying this major transformation is poorly understood so far; however, heat shock protein 90 (HSP90) appears to play a pivotal role. To further elucidate this process we identified proteins expressed preferentially in either of the two life cycle stages. By using two-dimensional (2-D) gel electrophoresis we observed defined changes in the protein pattern. A total of approximately 2000 protein spots were visualized. Of these, 31 proteins were present only in promastigotes. The abundance of 65 proteins increased during heat-induced in vitro amastigote differentiation, while a decreased abundance is observed for four proteins late in amastigote differentiation. Further analyses using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and peptide mass fingerprinting 67 protein spots were identified representing 41 different proteins known from databases and eight hypothetical proteins. Further studies showed that most of the stage-specific proteins fall into five groups of functionally related proteins. These functional categories are: (i) stress response (e.g. heat, oxidative stress); (ii) cytoskeleton and cell membrane; (iii) energy metabolism and phosphorylation; (iv) cell cycle and proliferation; and (v) amino acid metabolism. Very similar changes in the 2-D protein pattern were obtained when in vitro amastigote differentiation was induced either by pharmacological inhibition of HSP90 or by a combination of heat stress and acidic pH supporting the critical role for HSP90 in life cycle control. [source] Evaluation and improving the success rate of protein identification by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2005Freek Bouwman First page of article [source] Automating proteome analysis: improvements in throughput, quality and accuracy of protein identification by peptide mass fingerprinting,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2004Ludovic Canelle The use of robots has major effects on maximizing the proteomic workflow required in an increasing number of high-throughput projects and on increasing the quality of the data. In peptide mass finger printing (PMF), automation of steps downstream of two-dimensional gel electrophoresis is essential. To achieve this goal, the workflow must be fluid. We have developed tools using macros written in Microsoft Excel and Word to complete the automation of our platform. Additionally, because sample preparation is crucial for identification of proteins by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we optimized a sandwich method usable by any robot for spotting digests on a MALDI target. This procedure enables further efficient automated washing steps directly on the MALDI target. The success rate of PMF identification was evaluated for the automated sandwich method, and for the dried-droplet method implemented on the robot as recommended by the manufacturer. Of the two methods, the sandwich method achieved the highest identification success rate and sequence coverage of proteins. Copyright © 2004 John Wiley & Sons, Ltd. [source] Matrix-assisted laser desorption/ionization directed nano-electrospray ionization tandem mass spectrometric analysis for protein identificationRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2003Juergen Kast In those cases where the information obtained by peptide mass fingerprinting or matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) is not sufficient for unambiguous protein identification, nano-electrospray ionization (nano-ESI) and/or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis must be performed. The sensitivity of nano-ESI/MS, however, is lower than that of MALDI-MS, especially at very low analyte concentrations and/or in the presence of contaminants, such as salt and detergents. Moreover, to perform ESI-MS/MS, the peptide masses of the precursor ions must be known. The approach described in this paper, MALDI-directed nano-ESI-MS/MS, makes use of information obtained from the more sensitive MALDI-MS experiments in order to direct subsequent nano-ESI-MS/MS experiments. Peptide molecular ions found in the MALDI-MS analysis are then selected, as their (+2) precursor ions, for nano-ESI-MS/MS sequencing, even though these ions cannot be detected in the ESI-MS spectra. This method, originally proposed by Tempst et al. (Anal. Chem. 2000, 72: 777,790), has been extended to provide better sensitivity and shorter analysis times; also, a comparison with liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been performed. These experiments, performed using quadrupole time-of-flight instruments equipped with commercially available nano-ESI sources, have allowed the unambiguous identification of in-gel digested proteins at levels below their ESI-MS detection limits, even in the presence of salts and detergents. Copyright © 2003 John Wiley & Sons, Ltd. [source] Purification of the keratan sulfate proteoglycan expressed in prostatic secretory cells and its identification as lumicanTHE PROSTATE, Issue 3 2004John W. Holland Abstract BACKGROUND Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65,95 kDa. The KS moiety was susceptible to digestion with keratanase II and peptide N -glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. © 2004 Wiley-Liss, Inc. [source] Proteomic investigation of the effects of weight loss in the gastrocnemius muscle of wild and NZW rabbits via 2D-electrophoresis and MALDI-TOF MSANIMAL GENETICS, Issue 3 2010A. M. Almeida Summary The study of changes within the key agents regulating metabolism during genetic upgrading because of selection can contribute to an improved understanding of genomic and physiological relationships. This may lead to increased efficiencies in animal production. These changes, regarding energy and protein metabolic saving mechanisms, can be highlighted during food restriction periods. In this study, a 20% weight reduction was induced in two rabbit breeds: New Zealand white, a selected meat producer (Oryctolagus cuniculus cuniculus), and Iberian wild rabbit (Oryctolagus cuniculus algirus), with the aim of determining differential protein expression in the gastrocnemius muscle within control (ad libitum) and restricted diet experimental animal groups, using techniques of two-dimensional gel electrophoresis and peptide mass fingerprinting. Results show that l -lactate dehydrogenase, adenylate kinase, , enolase and , enolase, fructose bisphosphate aldolase A and glyceraldehyde 3-phosphate dehydrogenase, which are enzymes involved in energy metabolism, are differentially expressed in restricted diet experimental animal groups. These enzymes are available to be further tested as relevant biomarkers of weight loss and putative objects of manipulation as a selection tool towards increasing tolerance to weight loss. Similar reasoning could be applied to 2D gel electrophoresis spots corresponding to the important structural proteins tropomyosin , chain and troponin I. Finally, a spot identified as mitochondrial import stimulation factor seems of special interest as a marker of undernutrition, and it may be the object of further studies aiming to better understand its physiological role. [source] Two-dimensional gel electrophoresis-based proteomic analysis of the Medicago truncatula,rust (Uromyces striatus) interactionANNALS OF APPLIED BIOLOGY, Issue 2 2010M.Á. Castillejo A two-dimensional gel electrophoresis (2-DE) based proteomic approach has been used to study the Medicago truncatula,Uromyces striatus interaction. The 2-DE leaf protein profile of three M. truncatula genotypes displaying different phenotypes (susceptible and showing prehaustorial and posthaustorial resistance) in both noninoculated and inoculated plants have been compared. Multivariate statistical analysis identified 63 differential protein spots under the experimental conditions (genotypes/treatments). Variable spots were subjected to tandem mass spectrometry (MS, matrix-assisted laser desorption ionisation time of flight, MALDI-TOF/TOF) analysis to identify their possible functions. A total of 27 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of these observed changes correspond to enzymes involved in photosynthesis, energy metabolic pathways and stress related, whose pattern expression was different in relation to susceptibility/resistance of the genotypes studied. Results obtained in this work suggest that differences observed could be related to efficiency in energy utilisation and the induction of proteins involved in defence mechanism operating during early stages of infection. [source] Cellulases of Penicillium verruculosumBIOTECHNOLOGY JOURNAL, Issue 8 2010Valeria V. Morozova Abstract Nine major cellulolytic enzymes were isolated from a culture broth of a mutant strain of the fungus Penicillium verruculosum: five endo-1, 4-,-glucanases (EGs) having molecular masses 25, 33, 39, 52, and 70 kDa, and four cellobiohydrolases (CBHs: 50, 55, 60, and 66 kDa). Based on amino acid similarities of short sequenced fragments and peptide mass fingerprinting, the isolated enzymes were preliminary classified into different families of glycoside hydrolases: Cel5A (EG IIa, 39 kDa), Cel5B (EG IIb, 33 kDa), Cel6A (CBH II, two forms: 50 and 60 kDa), Cel7A (CBH I: 55 and 66 kDa), Cel7B (EG I: 52 and 70 kDa). The 25 kDa enzyme was identical to the previously isolated Cel12A (EG III). The family assignment was further confirmed by the studies of the substrate specificity of the purified enzymes. High-molecular-weight forms of the Cel6A, Cel7A, and Cel7B were found to possess a cellulose-binding module (CBM), while the catalytically active low-molecular-weight forms of the enzymes, as well as other cellulases, lacked the CBM. Properties of the isolated enzymes, such as substrate specificity toward different polysaccharides and synthetic glycosides, effect of pH and temperature on the enzyme activity and stability, adsorption on Avicel cellulose and kinetics of its hydrolysis, were investigated. [source] |