Peptide Mass Fingerprint (peptide + mass_fingerprint)

Distribution by Scientific Domains


Selected Abstracts


CE coupled to MALDI with novel covalently coated capillaries

ELECTROPHORESIS, Issue 4 2010
Stefan Bachmann
Abstract CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run-to-run and batch-to-batch reproducibility (RSD of migration time ,0.5% for run-to-run and ,9.5% for batch-to-batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI-MS for analysing complex samples, such as peptides, whereas the overall performance of the CE-MALDI-MS system was investigated by analysing a five-protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss-Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS. [source]


High-resolution H/D exchange studies on the HET-s218,295 prion protein

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 5 2005
Alexis Nazabal
Abstract In a search for improved resolution of hydrogen/deuterium (H/D) exchange experiments analyzed by mass spectrometry (HXMS), we evaluated two methodologies for a detailed structural study of solvent accessibility in the case of the HET-s218,295 prion protein. For the first approach, after incubation in the deuterated solvent, aggregated HET-s218,295 was digested with pepsin and the generated peptides were analyzed by nanospray mass spectrometry in an ion trap, with and without collision-induced dissociation (CID). We compared deuterium incorporation in peptides as determined on peptide pseudomolecular ions and on b and y fragments produced by longer peptides under CID conditions. For both b and y fragment ions, an extensive H/D scrambling phenomenon was observed, in contrast with previous studies comparing CID-MS experiments and 1H NMR data. Thus, the spatial resolution of HXMS experiments could not be improved by means of MS/MS data generated by an ion trap mass spectrometer. In a second approach, the incorporation of deuterium was analyzed by MS for 76 peptides of the HET-s218,289 peptide mass fingerprint, and the use of shared boundaries among peptic peptides allowed us to determine deuteration levels of small regions ranging from one to four amino acids. This methodology led to evidence of highly protected regions along the HET-s218,295 sequence. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Quantification of Greenland halibut serum vitellogenin: a trip from the deep sea to the mass spectrometer

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2009
Alejandro M. Cohen
This paper focuses on the sequential steps involved in developing a technique for quantifying Greenland halibut vitellogenin, a serum protein biomarker, using a comprehensive mass spectrometric approach. In the first phase of this study, in-gel trypsin digestions of serum proteins separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A characteristic band around a molecular mass of 185,kDa, present in the mature female specimens, but absent in the male samples, was identified as vitellognin according to the peptide mass fingerprint obtained by MALDI-MS. Subsequently, MALDI and electrospray ionization tandem mass spectrometry (ESI-MS/MS) analyses were performed on the digest of the vitellogenin band for de novo sequencing. From these studies, a characteristic 'signature' peptide (sequence: FFGQEIAFANIDK) was selected from a list of candidate peptides as a surrogate analytical standard used for quantification purposes. Sample preparation for vitellogenin quantification consisted of a simple one-step overnight trypsin digestion. Samples were spiked with an isotopologue signature peptide standard and analyzed by high-performance liquid chromatography (HPLC) coupled in-line to an electrospray quadrupole-hexapole-quadrupole tandem mass spectrometer, operated in selective reaction monitoring mode. Transitions [(m/z 750.0,,,1020.4 and 750.0,,,1205.4) and (754.8,,,1028.6 and 754.8,,,1213.2)] were monitored for the signature peptide and the internal standard, respectively. Samples obtained from the field showed that vitellogenin levels were in accordance with fish maturity determined by macroscopic examination of the gonad, proving this technique suitable for measuring vitellogenin as a serum protein biomarker for reproductive maturity in female fish. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Identification of protein differences between two clinical isolates of Streptococcus mutans by proteomic analysis

MOLECULAR ORAL MICROBIOLOGY, Issue 2 2008
L. H. Guo
Introduction:,Streptococcus mutans is generally considered to be the principal etiological agent for dental caries. Different strains of S. mutans may display different virulence mechanisms, so the isolation of the differential proteins is illuminating. Methods:,S. mutans strains 9-1 and 9-2, which both colonized the same oral cavity, were selected after screening for the possession of suspected virulence traits. The soluble cellular proteins were extracted from steady-state planktonic cells of strains 9-1 and 9-2 and were analyzed using high-resolution two-dimensional gel electrophoresis. Then, replicate maps of proteins from the two strains were generated. Proteins expressed only in strain 9-1 or 9-2 were excised and digested with trypsin by using an in-gel protocol. Tryptic digests were analyzed using matrix-assisted laser desorption/ionization time of flight mass spectrometry, by which peptide mass fingerprints were generated, and these were used to assign putative functions according to their homology with the translated sequences in the S. mutans genomic database. Results:, There were 12 proteins only expressed in strain 9-1 and three proteins only expressed in strain 9-2. They were involved in protein biosynthesis, protein folding, cell wall biosynthesis, fatty acid biosynthesis, nucleotide biosynthesis, repair of DNA damage, carbohydrate metabolism, signal transduction, and translation. Conclusion:, The identification of proteins differentially expressed between strains 9-1 and 9-2 provides new information concerning the mechanisms of cariogenesis. [source]