Home About us Contact | |||
Peptide Maps (peptide + map)
Selected AbstractsThe effect of low intensity ultraviolet-C light on monoclonal antibodiesBIOTECHNOLOGY PROGRESS, Issue 2 2009Christopher M. Lorenz Abstract As part of an investigation to identify potential new viral reduction strategies, ultraviolet-C (UV-C) light was examined. Although this technology has been known for decades to possess excellent virus inactivation capabilities, UV-C light can also introduce significant unwanted damage to proteins. To study the effect on monoclonal antibodies, three different antibodies were subjected to varying levels of UV-C light using a novel dosing device from Bayer Technology Services GmbH. The range of fluencies (or doses) covered was between 0 and 300 J/m2 at a wavelength of 254 nm. Product quality data generated from the processed pools showed only minimal damage done to the antibodies. Aggregate formation was low for two of the three antibodies tested. Acidic and basic variants increased for all three antibodies, with the basic species increasing more than the acidic species. Peptide maps made for the three sets of pools showed no damage to two of the three antibody backbones, whereas the third antibody had very low levels of methionine oxidation evident. Samples held at 2,8°C for 33 days showed no increase in aggregates or charge variants, indicating that the proteins did not degrade and were not damaged further by reactive or catalytic species that may have been created on exposure to UV-C light. Overall, UV-C light was shown to induce very little damage to monoclonal antibodies at lower fluencies and appears to be a viable option for viral inactivation in biotechnology applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Comparison of two glutaraldehyde immobilization techniques for solid-phase tryptic peptide mapping of human hemoglobin by capillary zone electrophoresis and mass spectrometryELECTROPHORESIS, Issue 9 2004Isabelle Migneault Abstract Stabilization of proteolytic enzymes, especially by immobilization, is of considerable interest because of their potential applications in medicine and the chemical and pharmaceutical industries. We report here a detailed comparison of two procedures for trypsin immobilization using the same homobifunctional agent, glutaraldehyde, for the purpose of peptide mapping. These methods include covalent coupling either to controlled pore glass (solid support) or via a cross-linking reaction (without any solid support). The immobilized trypsin preparations were characterized by the determination of immobilization efficiency, which ranged from 68 to > 95%, and measurement of apparent kinetic parameters toward a synthetic peptide-like substrate. Batch digestions of whole denaturated human normal adult hemoglobin (HbA) were performed to obtain peptide maps by capillary zone electrophoresis (CZE). Migration time reproducibility of the CZE maps was excellent, with a mean relative standard deviation of 1.5%. Moreover, the two immobilized enzyme preparations showed excellent reproducibility for repeated digestions. Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry was also used for peptide mass mapping of denaturated HbA digested using the two immobilized trypsin preparations. Even though the two immobilized trypsin preparations do not behave identically, similar sequence coverages of 57% and 61% (for the two HbA chains merged) were achieved for the support-based and cross-linked trypsin preparations, respectively. [source] Insoluble eggshell matrix proteins , their peptide mapping and partial characterization by capillary electrophoresis and high-performance liquid chromatographyELECTROPHORESIS, Issue 5 2003Ivan Mik Abstract Avian eggshell matrix proteins were studied by two analytical approaches. Peptide mapping was done by trypsin and pepsin followed by collagenase cleavage; analyses were carried out by capillary electrophoresis and reversed-phase high-performance liquid chromatography (HPLC). Comparison of peptide maps obtained by both methods revealed a complex mixture of peptides in the insoluble layers of the eggshell; it was concluded that there are at least three different insoluble protein/peptide layers in the avian eggshell (cuticle, palisade, and mammillary layer). Partial characterization of peptides in each layer was made by HPLC-mass spectrometry analysis. There is an evidence that the eggshell insoluble proteins contain species susceptible to collagenase cleavage, however, the sequences split by this enzyme probably are not those typical for the main triple-helical core of collagenous proteins. It is proposed that the action of collagenase upon eggshell proteins is caused by the side effect of collagenase described previously with synthetic peptides. Some of the proteins present are probably glycosylated. Fatty acid content in the insoluble eggshell layers (after decalcification) was in the range of 2,4% (which reflected both lipid and lipoproteins bound fatty acids). Porphyrin pigments are dominant in the cuticle layer. [source] Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl- myo -inositol in immature endosperm of Zea maysPHYSIOLOGIA PLANTARUM, Issue 2 2003Stanislaw Kowalczyk 1- O -(indole-3-acetyl)- , - d -glucose: myo -inositol indoleacetyl transferase (IA- myo -inositol synthase) is an important enzyme in IAA metabolism. This enzyme catalyses the transfer of the indole acetyl (IA) moiety from 1- O -(indole-3-acetyl)- , - d -glucose to myo -inositol to form IA- myo- inositol and glucose. IA- myo -inositol synthase was purified to an electrophoretically homogenous state from maize liquid endosperm by fractionation with ammonium sulphate, anion-exchange, adsorption on hydroxylapatite, affinity chromatography on ConA-Sepharose, preparative PAGE and isoelectric focusing. We thus obtained two enzyme preparations which differ in their Rf on 8% polyacrylamide gel. The preparation of Rf 0.36 contained a single 56.4 kDa polypeptide, whereas the preparation of Rf 0.39 consisted of two polypeptides of 56.4 and 53.5 kDa. Both purified preparations of IAInos synthase also exhibited the activity of an IAInos hydrolase, showing that the dual activity was associated with a single protein. Results of gel filtration and analytical SDS-PAGE suggest that the native enzyme exists as both a monomeric (65 kDa) and homo- or heterodimeric form (110,130 kDa). Analysis of peptide maps and amino acid sequences of two 21 amino-acid peptides showed that polypeptides of 56.4 and 53.5 kDa have the same primary structure and that the 3 kDa difference in molecular mass is probably caused by different glycosylation levels. Comparison of this partial and internal amino acid sequence with sequences of other plant acyltransferases indicated similarity to several proteins which belonged to the serine carboxypeptidase-like (SCPL) acyltransferase family. [source] |