PEI Matrix (pei + matrix)

Distribution by Scientific Domains


Selected Abstracts


Fabrication and characterization of solution cast MWNTs/PEI nanocomposites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009
Lu Shao
Abstract Under mild conditions with the aid of ultrasonic, multi-walled carbon nanotubes (MWNTs) have been functionalized by mixed acid treatment which was proved by FTIR and XPS. According to SEM, acid treatment on MWNTs decreased the thickness of the membrane. However, no devastating damage and fracture happened on MWNTs after acid treatment under mild conditions. Precipitation observation illustrated that the enhanced solubility of MWNTs in water, ethanol, and dimethylformaide (DMF). Further, MWNTs/polyetherimide (PEI) nanocomposite films have been prepared by the simple solution casting method. The dispersion of MWNTs in polyetherimide (PEI) matrix was observed by Atomic Force Microscopy (AFM) which illustrated the improved dispersion for acid treated MWNTs in PEI. The adding of MWNTs in PEI decreased the dispersive component of surface energy and increased the polar component of surface energy, which resulted in the decrement of film surface energy. Differential scanning calorimetry showed that the glass transition temperature of PEI increased by about 4°C after the introduction of MWNTs. This improvement was related to the better affinity between MWNTs and PEI matrix, which also resulted in the improvement of mechanical strength in MWNTs/PEI nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Structure,properties relations in titanium-based thermoplastic fiber,metal laminates

POLYMER COMPOSITES, Issue 3 2006
P. Cortés
This paper investigates the interfacial, tensile, and fatigue properties of a titanium alloy fiber,metal laminate (Ti-FML) based on woven glass-fiber-reinforced polyetherimide (GF/PEI). Initial tests, using the single cantilever beam (SCB) geometry have shown that it is not necessary to surface treat the titanium alloy in order to achieve a high value of metal,composite interfacial fracture toughness. Tensile tests have shown that the mechanical properties of the FML lie between those offered by its constituent materials. Tension,tension fatigue tests have shown that the fatigue lives of these laminates are superior to those offered by the plain titanium alloy. The mechanical properties of this glass fiber/PEI FML have also been compared with those offered by an FML based on a unidirectional carbon-fiber-reinforced polyetheretherketone (CF/PEEK) composite. Here, it has been shown that although the fatigue properties of this woven GF/PEI composite are inferior to those of the CF/PEEK FML, they do offer a higher temperature capability due to the higher glass transition temperature of the PEI matrix. Polym. Compos. 27:264,270, 2006. © 2006 Society of Plastics Engineers. [source]


Fracture behavior of polyetherimide (PEI) and interlaminar fracture of CF/PEI laminates at elevated temperatures

POLYMER COMPOSITES, Issue 1 2005
Ki-Young Kim
To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode-I loading. The numerical analyses were based on 2-D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane-strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20,28, 2005. © 2004 Society of Plastics Engineers. [source]


Effectual dispersion of carbon nanofibers in polyetherimide composites and their mechanical and tribological properties

POLYMER ENGINEERING & SCIENCE, Issue 10 2010
Bin Li
The use of proliferation of nanotechnology in commercial applications is driving requirements for minimal chemical processing and simple processes in industry. Carbon nanofiber (CNF) products possess very high purity levels without the need of purification processing before use and are in growing demand for this quality. Polyetherimide (PEI) has excellent mechanical and thermal performance, but its high viscosity makes its nanocomposites processing very challenging. In this study, a facile melt-mixing method was used to fabricate PEI nanocomposites with as received and physically treated CNFs. The dispersion of CNFs was characterized by scanning electron microscopy, transmitted optical microscopy, and electrometer with large-area electrodes. The results showed that the facile and powerful melt-mixing method is effective in homogeneously dispersing CNFs in the PEI matrix. The flexural and tribological characteristics were investigated and the formation of spatial networks of CNFs and weak interfacial bonding were considered as competitive factors to enhanced flexural properties. The composites with 1.0 wt% CNFs showed flexural strength and toughness increased by more than 50 and 550%, respectively, but showed very high wear rate comparable with that of pure PEI. The length of the CNFs also exerted great influences on both mechanical and tribological behaviors. POLYM. ENG. SCI., 50:1914,1922, 2010. © 2010 Society of Plastics Engineers [source]