Peak Symmetry (peak + symmetry)

Distribution by Scientific Domains


Selected Abstracts


Evaluation of carrier ampholyte-based capillary electrophoresis for separation of peptides and peptide mimetics,

ELECTROPHORESIS, Issue 18 2008
an Koval
Abstract Carrier ampholyte-based capillary electrophoresis (CABCE) has recently been introduced as an alternative to CE (CZE) in the classical buffers. In this study, isoelectric BGEs were obtained by fractionation of Servalyt pH 4,9 carrier ampholytes to cuts of typical width of 0.2 pH unit. CABCE feasibility was examined on a series of insect oostatic peptides, i.e. proline-rich di- to decapeptides, and phosphinic pseudopeptides , tetrapeptide mimetics synthesized as a mixture of four diastereomers having the ,P(O)(OH),CH2, moiety embedded into the peptide backbone. With identical selectivity, the separation efficiency of CABCE proved to be as good as classical CE for the insect oostatic peptides and better for diastereomers of the phosphinic pseudopeptides. In addition, despite the numerous species present in the narrow pH cuts of carrier ampholytes, CABCE seems to be free of system zones that could hamper the analysis. Peak symmetry was good for moderately to low mobile peptides, whereas some peak distortion due to electromigration dispersion, was observed for short peptides of rather high mobility. [source]


Analysis of flavonoids by CE using capacitively coupled contactless conductivity detection

ELECTROPHORESIS, Issue 5 2007
Stefan Bachmann
Abstract A CE method employing capacitively coupled contactless conductivity (C4D) compared to indirect UV-detection was developed for the analysis of phytochemically relevant flavonoids, such as 6-hydroxyflavone, biochanin A, hesperetin and naringenin. To ensure fast separation at highest selectivity, sensitivity and peak symmetry, the pH value and the concentration of the running BGE had to be optimized regarding both co- and counter-EOF mode. Optimum conditions were found to be 1.0 and 5.0,mM chromate BGE (pH,9.50) in the counter- and co-EOF mode, respectively. Validation of the established CE-C4D method pointed out to be approximately seven times more sensitive compared to indirect UV-detection applying the same conditions. The lower LOD defined at an S/N of 3:1 was found between 0.12 and 0.21,µg/mL for the analytes of interest using C4D and between 0.77 and 1.20,µg/mL using indirect UV-detection. Compared to an earlier published CE method employing direct UV-detection, C4D was found to be approximately two times more sensitive. Due to the lower baseline noise, C4D showed an excellent regression coefficient >0.99 compared to 0.93 when using indirect UV detection calibrating within a concentration range between 1 and 10,µg/mL. The influence of the sugar moiety on the conductivity of a flavonoid was studied upon the analysis of the aglycon hesperetin and the rutinosid hesperidin. The sugar moiety in hesperedin shows a higher conductivity compared to hesperetin. Finally, the optimized established CE-C4D method was applied to the determination and quantification of naringenin in Sinupret®. [source]


Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection

ELECTROPHORESIS, Issue 4 2003
Pavel Coufal
Abstract Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts. [source]


Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6-7 2010
Chad E. Wujcik
Abstract Hydrophilic retention coefficients for 17 peptides were calculated based on retention coefficients previously published for TSKgel silica-60 and were compared with the experimental elution profile on a Waters Atlantis HILIC silica column using TFA and methanesulfonic acid (MSA) as ion-pairing reagents. Relative peptide retention could be accurately determined with both counter-ions. Peptide retention and chromatographic behavior were influenced by the percent acid modifier used with increases in both retention and peak symmetry observed at increasing modifier concentrations. The enhancement of net peptide polarity through MSA pairing shifted retention out by nearly five-fold for the earliest eluting peptide, compared with TFA. Despite improvements in retention and efficiency (Neff) for MSA over TFA, a consistent reduction in calculated selectivity (,) was observed. This result is believed to be attributed to the stronger polar contribution of MSA masking and diminishing the underlying influence of the amino acid residues of each associated peptide. Finally, post-column infusion of propionic acid and acetic acid was evaluated for their potential to recover signal intensity for TFA and MSA counter-ions for LC-ESI-MS applications. Acetic acid generally yielded more substantial signal improvements over propionic acid on the TFA system while minimal benefits and some further reductions were noted with MSA. [source]


Utility of porous graphitic carbon stationary phase in quantitative liquid chromatography/tandem mass spectrometry bioanalysis: quantitation of diastereomers in plasma

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2006
Yuan-Qing Xia
A major challenge in selecting an appropriate stationary phase for diastereomeric separation is that it is difficult to predict which of the commercially available stationary phases could achieve the required liquid chromatographic (LC) separation. This work describes the selection and evaluation of a porous graphitic carbon (PGC) column coupled with tandem mass spectrometry (MS/MS) for the simultaneous quantitation of an experimental drug candidate (I), its two diastereomeric metabolites (II and III), and its demethylated metabolite (IV) in rat plasma. In addition, we investigated the PGC column for the separation of another drug candidate (VI), its two diastereomeric metabolites (VII and VIII) and its ketone metabolite (IX). The PGC column showed excellent chromatographic resolution for the two diastereomers II and III, as well as for VII and VIII. In contrast, the required resolution for the diastereomers II and III could not be achieved using silica-bonded C18, C30, phenyl, perfluorinated, polar embedded and polar end-capped phases. The PGC column showed ruggedness with excellent reproducibility of retention times, peak symmetry and response over a period of more than 400 injections of a plasma acetonitrile-precipitation extract. Excellent accuracy and precision were achieved, with accuracy of 94,108% and intra- and inter-run precision within 9%. This work indicates that PGC is a valuable addition to the repertoire of LC columns used for quantitative LC/MS/MS bioanalysis, especially where the separation and quantitation of diastereomeric analytes is involved. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Phosphate buffers in capillary electrophoresis/mass spectrometry using atmospheric pressure photoionization and electrospray ionization

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2003
S. L. Nilsson
Capillary electrophoresis (CE) has been combined with atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) for mass spectrometric (MS) detection. Separation conditions using potassium phosphate buffer and ammonium formate buffer have been compared for analysis of eleven pharmaceutical bases. The results showed improvements in separation efficiency and peak symmetry when phosphate buffer was used. The low flow in CE may enable utilization of these advances with MS detection. Compared with ESI, the APPI technique provided a cluster-free background. The enhanced signal-to-noise ratio in the total ion current (TIC) and the reduced spectral background indicated that the APPI process is less affected by non-volatile salts in the CE buffers. This results in a wider range of choice of CE buffers in CE/MS analysis when APPI is the ionization method. Copyright © 2003 John Wiley & Sons, Ltd. [source]