Home About us Contact | |||
Peak Strength (peak + strength)
Selected AbstractsPseudo-dynamic seismic response of reinforced concrete frames infilled with non-structural brick masonryEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2005F. Colangelo Abstract This paper presents pseudo-dynamic test results on the in-plane seismic behaviour of infilled frames. Thirteen single-storey, single-bay, half-size-scale, reinforced concrete-frame specimens, most of which infilled with non-structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd. [source] Calibration of a discrete element model for intact rock up to its peak strengthINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2010Yuannian Wang Abstract When three dimensional, bonded discrete element models (DEMs) are deployed to model intact rock, a basic question is how to determine the micro parameters that control macro properties of the modeled rock. After briefly describing the authors' DEM code, this paper describes algorithms to calibrate the model's micro parameters against standard laboratory tests, such as uniaxial and triaxial tests. Sensitivity analysis is used to identify the deformability micro parameters by obtaining relationships between microscopic and macroscopic deformability properties. The strength model parameters are identified by a global optimization process aimed at minimizing the difference between computed and experimental failure envelopes. When applied to the experimental results of Lac du Bonnet granite, this calibration process produced a good agreement between simulated and experimental results for both deformability and strength properties. Copyright © 2009 John Wiley & Sons, Ltd. [source] On double shearing in frictional materialsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2007J. A. M. Teunissen Abstract This paper evaluates the mechanical behaviour of yielding frictional geomaterials. The general Double Shearing model describes this behaviour. Non-coaxiality of stress and plastic strain increments for plane strain conditions forms an important part of this model. The model is based on a micro-mechanical and macro-mechanical formulation. The stress,dilatancy theory in the model combines the mechanical behaviour on both scales. It is shown that the general Double Shearing formulation comprises other Double Shearing models. These models differ in the relation between the mobilized friction and dilatancy and in non-coaxiality. In order to describe reversible and irreversible deformations the general Double Shearing model is extended with elasticity. The failure of soil masses is controlled by shear mechanisms. These shear mechanisms are determined by the conditions along the shear band. The shear stress ratio of a shear band depends on the orientation of the stress in the shear band. There is a difference between the peak strength and the residual strength in the shear band. While peak stress depends on strength properties only, the residual strength depends upon the yield conditions and the plastic deformation mechanisms and is generally considerably lower than the maximum strength. It is shown that non-coaxial models give non-unique solutions for the shear stress ratio on the shear band. The Double Shearing model is applied to various failure problems of soils such as the direct simple shear test, the biaxial test, infinite slopes, interfaces and for the calculation of the undrained shear strength. Copyright © 2006 John Wiley & Sons, Ltd. [source] Numerical simulations of simple shear with non-coaxial soil modelsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2006Yunming Yang Abstract This paper investigates the effects of a non-coaxial model on simulated stress,strain behaviour of granular materials subject to simple shearing under various initial conditions. In most cases, a significant difference of predictions between coaxial and non-coaxial modelling is found during the early stage in shearing. With the increase in shearing, non-coaxial simulations approach and tend to coincide with coaxial simulations. It is also found that the roles of non-coaxial modelling in simulating simple shear behaviour are considerably influenced by hardening rules, flow rules, initial static lateral pressure coefficients. In some cases, the non-coaxial modelling gives a similar simulation as the coaxial modelling. In other cases, the non-coaxial modelling decreases the hardening response or softening response of materials, compared with the coaxial modelling. Under certain conditions, the predicted peak strength of materials with non-coaxial modelling is larger than that for coaxial modelling. Some of these observations can be attributed to the amount of principal stress rotation in various cases analysed. Others can be attributed to the difference between the directions of the non-coaxial plastic flow and those for coaxial plastic flow. Copyright © 2005 John Wiley & Sons, Ltd. [source] A critical state model for sands dependent on stress and densityINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2004Y.P. Yao Abstract An elastoplastic model for sands is presented in this paper, which can describe stress,strain behaviour dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and applied to the yield function in order to predict the plastic deformation for very loose sands; and (b) another new state parameter, which is used to determine the peak strength and describe the critical state behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also predict the stress,strain behaviour of sands under three-dimensional stress conditions by using a transformed stress tensor instead of ordinary stress tensor. Copyright © 2004 John Wiley & Sons, Ltd. [source] Friction and degradation of rock joint surfaces under shear loadsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2001F. Homand Abstract The morpho-mechanical behaviour of one artificial granite joint with hammered surfaces, one artificial regularly undulated joint and one natural schist joint was studied. The hammered granite joints underwent 5 cycles of direct shear under 3 normal stress levels ranging between 0.3 and 4 MPa. The regularly undulated joint underwent 10 cycles of shear under 6 normal stress levels ranging between 0.5 and 5 MPa and the natural schist replicas underwent a monotonics shear under 5 normal stress levels ranging between 0.4 and 2.4 MPa. These direct shear tests were performed using a new computer-controlled 3D-shear apparatus. To characterize the morphology evolution of the sheared joints, a laser sensor profilometer was used to perform surface data measurements prior to and after each shear test. Based on a new characterization of joint surface roughness viewed as a combination of primary and secondary roughness and termed by the joint surface roughness, SRs, one parameter termed ,joint surface degradation', Dw, has been defined to quantify the degradation of the sheared joints. Examinations of SRs and Dw prior to and after shearing indicate that the hammered surfaces are more damaged than the two other surfaces. The peak strength of hammered joint with zero-dilatancy, therefore, significantly differs from the classical formulation of dilatant joint strength. An attempt has been made to model the peak strength of hammered joint surfaces and dilatant joints with regard to their surface degradation in the course of shearing and two peak strength criteria are proposed. Input parameters are initial morphology and initial surface roughness. For the hammered surfaces, the degradation mechanism is dominant over the phenomenon of dilatancy, whereas for a dilatant joint both mechanisms are present. A comparison between the proposed models and the experimental results indicates a relatively good agreement. In particular, compared to the well-known shear strength criteria of Ladanyi and Archambault or Saeb, these classical criteria significantly underestimate and overestimate the observed peak strength, respectively, under low and high normal stress levels. In addition and based on our experimental investigations, we put forward a model to predict the evolution of joint morphology and the degree of degradation during the course of shearing. Degradations of the artificial undulated joint and the natural schist joint enable us to verify the proposed model with a relatively good agreement. Finally, the model of Ladanyi and Archambault dealing with the proportion of total joint area sheared through asperities, as, once again, tends to underestimate the observed degradation. Copyright © 2001 John Wiley & Sons, Ltd. [source] Strength of two structured soils in triaxial compressionINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2001Ron C. K. Wong Abstract Oil sands are dense granular materials with interlocked structure and clay shales are heavily overconsolidated clays. They are classified as structured soil or weak rock, exhibiting high peak strength with severe softening and dilation, particularly at low confining stress. The triaxial compression test results indicate that both materials yield linear Mohr,Coulomb envelopes with an apparent cohesion for peak and residual strengths. However, the strength components mobilized from these two materials are very different. This paper investigates if these strength parameters are intrinsic properties or responses derived in triaxial compression conditions. Computer tomography scanning technique is used to aid in examining the micro-structural features of the sheared specimens such as shear banding pattern, shear band thickness, spatial porosity distributions inside and outside shear bands. These micro-structural features are used to explain the macro-deformation response observed in the triaxial compression tests. Mobilization of strength components derived from interlocked structure, cementation, dilation, rolling and critical state are analysed for pre-, post-peak softening and residual stages. It is found that the empirical correlation such as Mohr,Coulomb failure criterion based on triaxial compression test results does not necessarily reflect the intrinsic properties of the test materials. Testing conditions are embedded in the empirical correlation. Copyright © 2001 John Wiley & Sons, Ltd. [source] |