Home About us Contact | |||
Patterning
Kinds of Patterning Terms modified by Patterning Selected AbstractsFREQUENCY AND SPATIAL PATTERNING OF CLONAL REPRODUCTION IN LOUISIANA IRIS HYBRID POPULATIONSEVOLUTION, Issue 1 2000John M. Burke Abstract., The plant genera in which natural hybridization is most prevalent tend to be outcrossing perennials with some mechanism for clonal (i.e., asexual) reproduction. Although clonal reproduction in fertile, sexually reproducing hybrid populations could have important evolutionary consequences, little attention has been paid to quantifying this parameter in such populations. In the present study, we examined the frequency and spatial patterning of clonal reproduction in two Louisiana iris hybrid populations. Allozyme analysis of both populations revealed relatively high levels of genotypic diversity. However, a considerable amount of clonality was apparent. Nearly half of all genets (47%) in one population and more than half (61%) in the other had multiple ramets. Furthermore, both populations exhibited relatively high levels of genetic structuring, a pattern that resulted from the aggregation of clonal ramets. The occurrence of clonal reproduction in hybrid populations could not only facilitate introgression through an increase in the number of flowering ramets per genet and/or the survivorship of early generation hybrids, but might also influence the mating system of such populations. Any potential increase in the selfing rate due to cross-pollination among ramets of the same genet may, in turn, increase the likelihood of homoploid hybrid speciation. [source] Cell fate and timing in the evolution of neural crest and mesoderm development in the head region of amphibians and lungfishesACTA ZOOLOGICA, Issue 2009Rolf Ericsson Abstract Our research on the evolution of head development focuses on understanding the developmental origins of morphological innovations and involves asking questions like: How flexible (or conserved) are cell fates, patterns of cell migration or the timing of developmental events (heterochrony)? How do timing changes, or changes in life history affect head development and growth? Our ,model system' is a comparison between lungfishes and representatives from all three extant groups of amphibians. Within anuran amphibians, major changes in life history such as the repeated evolution of larval specializations (e.g. carnivory), or indeed the loss of a free-swimming larva, allows us to test for developmental constraints. Cell migration and cell fate are conserved in cranial neural crest cells in all vertebrates studied so far. Patterning and developmental anatomy of cranial neural crest and head mesoderm cells are conserved within amphibians and even between birds, mammals and amphibians. However, the specific formation of hypobranchial muscles from ventral somitic processes shows variation within tetrapods. The evolution of carnivorous larvae in terminal taxa is correlated with changes in both pattern and timing of head skeletal and muscle development. Sequence-heterochronic changes are correlated with feeding mode in terminal taxa and with phylogenetic relatedness in basal branches of the phylogeny. Eye muscles seem to form a developmental module that can evolve relatively independently from other head muscles, at least in terms of timing of muscle differentiation. [source] Stable Non-Covalent Large Area Patterning of Inert Teflon-AF Surface: A New Approach to Multiscale Cell Guidance,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Francesco Valle Micro- and nano-patterning of cell adhesion proteins is demonstrated to direct the growth of neural cells, viz. human neuroblastoma SHSY5Y, at precise positions on a strongly antifouling substrate of technolological interest. We adopt a soft-lithographic approach with oxygen plasma modified PDMS stamps to pattern human laminin on Teflon-AF films. These patterns are based on the interplay of capillary forces within the stamp and non-covalent intermolecular and surface interactions. Remarkably, they remain stable for several days upon cell culture conditions. The fabrication of substrates with adjacent antifouling and adhesion-promoting regions allows us to reach absolute spatial control in the positioning of neuroblastoma cells on the Teflon-AF films. This patterning approach of a technologically-relevant substrate can be of interest in tissue engineering and biosensing. [source] Genetic variation for dorsal,ventral patterning of the Drosophila melanogaster eggshellEVOLUTION AND DEVELOPMENT, Issue 2 2005Lisa M. Goering Summary Patterning of the insect eggshell is an excellent system for exploring the molecular basis of phenotypic variation. In Drosophila melanogaster, two dorsal,anterior respiratory appendages are produced in response to signaling through the Epidermal growth factor receptor (Egfr). Previous work implicates Egfr pathway function in both intraspecific variation for dorsal appendage spacing (DAS) on the eggshell, as well as interspecific differences in dorsal appendage number and location. To test the hypothesis that genetic variation in Egfr contributes to variation in eggshell patterning, we have made use of naturally occurring intraspecific variation for DAS as a model quantitative trait. We found that there is substantial segregating genetic variation for DAS in D. melanogaster, and have tested for associations with 289 common polymorphisms in the Egfr locus. A marginal association was seen with two polymorphic sites in Egfr; however, we failed to replicate these findings in a second population, or in a modified quantitative complementation test designed to specifically test the effects of the putative polymorphisms. Therefore, we conclude that the polymorphisms we have identified in Egfr do not contribute to variation in DAS, and further work is required to understand the genetic architecture of this trait. [source] Conjugated Polymers: High-Resolution Scanning Near-Field Optical Lithography of Conjugated Polymers (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Mater. The fabrication of high-resolution nanostructures in both poly(p -phenylene vinylene), PPV, and a crosslinkable derivative of poly(9,9,-dioctylfluorene), F8, using scanning near-field optical lithography, is reported. The ability to draw complex, reproducible structures with 65000 pixels and lateral resolution below 60 nm (< ,/5) is demonstrated over areas up to 20 ,m × 20 ,m. Patterning on length-scales of this order is desirable for realizing applications both in organic nanoelectronics and nanophotonics. The technique is based on the site-selective insolubilization of a precursor polymer under exposure to the confined optical field present at the tip of an apertured near-field optical fiber probe. In the case of PPV, a leaving-group reaction is utilized to achieve insolubilization, whereas the polyfluorene is insolubilized using a photoacid initiator to create a crosslinked network in situ. For PPV, resolubilization of the features is observed at high exposure energies. This is not seen for the crosslinked F8 derivative, r-F8Ox, allowing us to pattern structures up to 200 nm in height. [source] High-Resolution Scanning Near-Field Optical Lithography of Conjugated PolymersADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Daniel Credgington The fabrication of high-resolution nanostructures in both poly(p -phenylene vinylene), PPV, and a crosslinkable derivative of poly(9,9,-dioctylfluorene), F8, using scanning near-field optical lithography, is reported. The ability to draw complex, reproducible structures with 65000 pixels and lateral resolution below 60 nm (< ,/5) is demonstrated over areas up to 20 ,m × 20 ,m. Patterning on length-scales of this order is desirable for realizing applications both in organic nanoelectronics and nanophotonics. The technique is based on the site-selective insolubilization of a precursor polymer under exposure to the confined optical field present at the tip of an apertured near-field optical fiber probe. In the case of PPV, a leaving-group reaction is utilized to achieve insolubilization, whereas the polyfluorene is insolubilized using a photoacid initiator to create a crosslinked network in situ. For PPV, resolubilization of the features is observed at high exposure energies. This is not seen for the crosslinked F8 derivative, r-F8Ox, allowing us to pattern structures up to 200 nm in height. [source] Large-Area Nanoscale Patterning of Functional Materials by Nanomolding in CapillariesADVANCED FUNCTIONAL MATERIALS, Issue 15 2010Xuexin Duan Abstract Within the past years there has been much effort in developing and improving new techniques for the nanoscale patterning of functional materials used in promising applications like nano(opto)electronics. Here a high-resolution soft lithography technique,nanomolding in capillaries (NAMIC),is demonstrated. Composite PDMS stamps with sub-100,nm features are fabricated by nanoimprint lithography to yield nanomolds for NAMIC. NAMIC is used to pattern different functional materials such as fluorescent dyes, proteins, nanoparticles, thermoplastic polymers, and conductive polymers at the nanometer scale over large areas. These results show that NAMIC is a simple, versatile, low-cost, and high-throughput nanopatterning tool. [source] Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable PropertiesADVANCED FUNCTIONAL MATERIALS, Issue 15 2010Shikuan Yang Abstract Surface patterns of nanoshell arrays play an important role in diverse applications including surface-enhanced Raman scattering (SERS) sensors, lithium-ion batteries, solar cells, and optical devices. This paper describes an innovative surface nanopatterning technique for realizing large-scale ordered arrays of metallic spherical nanoshells with well-defined structures. Ag nanoshell arrays are prepared using polystyrene sphere templates by an electrophoretic process in Ag colloidal solutions. The fabricated Ag nanoshell arrays have a high controllability of the structural parameters, including the diameter, the surface roughness, and the intershell spacing, giving rise to the tunable properties of nanoshell arrays. As an example, tunable SERS and localized surface plasmon resonance of the nanoshell arrays are demonstrated by controlling the structural parameters. The surface nanopatterning technique shown in this paper is a general fabrication process in achieving not only metallic nanoshell arrays, but also nanoshell arrays of semiconductors and metallic oxides. [source] Cell Adhesion and Cellular Patterning on a Self-Assembled Monolayer of Zeolite L CrystalsADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Nermin Seda Kehr Abstract Chemically functionalized self-assembled monolayers made by disk-shaped zeolite L nanocrystals are used as models for biocompatible surfaces to study cell-adhesion behavior. Different chemical groups lead to different cellular behavior and fluorescent-molecule-loaded zeolites allow the position of the cells to be determined. Furthermore, a patterned monolayer of asymmetrically functionalized zeolite L obtained by microcontact chemistry is used to grow cells. A spatial recognition of the cells, which proliferate only on the bioactive-molecule-functionalized stripes, is possible. [source] Correction: High-Resolution Patterning of Hydrogels in Three Dimensions using Direct-Write Photofabrication for Cell GuidanceADVANCED FUNCTIONAL MATERIALS, Issue 9 2010Stephanie K. Seidlits No abstract is available for this article. [source] Thiophene,Benzothiadiazole Co-Oligomers: Synthesis, Optoelectronic Properties, Electrical Characterization, and Thin-Film PatterningADVANCED FUNCTIONAL MATERIALS, Issue 3 2010Manuela Melucci Abstract Newly synthesized thiophene (T) and benzothiadiazole (B) co-oligomers of different size, alternation motifs, and alkyl substitution types are reported. Combined spectroscopic data, electrochemical analysis, and theoretical calculations show that the insertion of a single electron-deficient B unit into the aromatic backbone strongly affects the LUMO energy level. The insertion of additional B units has only a minor effect on the electronic properties. Cast films of oligomers with two alternated B rings (B,T,B inner core) display crystalline order. Bottom-contact FETs based on films cast on bare SiO2 show hole-charge mobilities of 1,×,10,3,5,×,10,3,cm2 V,1s,1 and Ion/Ioff ratios of 105,106. Solution-cast films of cyclohexyl-substituted compounds are amorphous and do not show FET behavior. However, the lack of order observed in these films can be overcome by nanorubbing and unconventional wet lithography, which allow for fine control of structural order in thin deposits. [source] Reactive Imprint Lithography: Combined Topographical Patterning and Chemical Surface Functionalization of Polystyrene- block -poly(tert -butyl acrylate) FilmsADVANCED FUNCTIONAL MATERIALS, Issue 3 2010Joost Duvigneau Abstract Here, reactive imprint lithography (RIL) is introduced as a new, one-step lithographic tool for the fabrication of large-area topographically patterned, chemically activated polymer platforms. Films of polystyrene- block -poly(tert -butyl acrylate) (PS- b -PtBA) are imprinted with PDMS master stamps at temperatures above the corresponding glass transition and chemical deprotection temperatures to yield structured films with exposed carboxylic acid and anhydride groups. Faithful pattern transfer is confirmed by AFM analyses. Transmission-mode FTIR spectra shows a conversion of over 95% of the tert -butyl ester groups after RIL at 230,°C for 5 minutes and a significantly reduced conversion to anhydride compared to thermolysis of neat films with free surfaces in air or nitrogen. An enrichment of the surface layer in PS is detected by angle-resolved X-ray photoelectron spectroscopy (XPS). In order to demonstrate application potentials of the activated platforms, a 7,nm,±,1,nm thick NH2 -terminated PEG layer (grafting density of 0.9 chains nm,2) is covalently grafted to RIL-activated substrates. This layer reduces the non-specific adsorption (NSA) of bovine serum albumin by 95% to a residual mass coverage of 9.1,±,2.9,ng cm,2. As shown by these examples, RIL comprises an attractive complementary approach to produce bio-reactive polymer surfaces with topographic patterns in a one-step process. [source] High-Resolution Patterning of Hydrogels in Three Dimensions using Direct-Write Photofabrication for Cell GuidanceADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Stephanie K. Seidlits Abstract The development of three-dimensional, spatially defined neuronal cultures that mimic chemical and physical attributes of native tissue is of considerable interest for various applications, including the development of tailored neuronal networks and clinical repair of damaged nerves. Here, the use of multiphoton excitation to photocrosslink protein microstructures within three-dimensional, optically transparent hydrogel materials, such as those based on hyaluronic acid, is reported. Multiphoton excitation confines photocrosslinking to a three-dimensional voxel with submicron spatial resolution, enabling fabrication of protein matrices with low- to sub-micrometer feature sizes by scanning the focus of a laser relative to the reagent solution. These methods can be used to create complex three-dimensional architectures that provide both chemical and topographical cues for cell culture and guidance, providing for the first time a means to direct cell adhesion and migration on size scales relevant to in vivo environments. Using this approach, guidance of both dorsal root ganglion cells (DRGs) and hippocampal neural progenitor cells (NPCs) along arbitrary, three-dimensional paths is demonstrated. [source] Spatial Patterning of the , -Phase in Poly(9,9-dioctylfluorene): A Metamaterials-Inspired Molecular Conformation Approach to the Fabrication of Polymer Semiconductor Optical StructuresADVANCED FUNCTIONAL MATERIALS, Issue 20 2009Gihan Ryu Abstract Materials in which sub-wavelength physical structures, rather than variations in chemical composition, are used to modify the nature of their interaction with electromagnetic radiation form the promising new class of metamaterials. For molecular materials one has an intriguing alternative, namely structuring the conformation or physical geometry of the molecule. In order for this to be an effective methodology one needs the change in conformation i) to engender a significant change in electromagnetic properties and ii) to be spatially controllable to allow patterning of practical structures. In this paper the potential of such an approach is demonstrated through spatial patterning, via masked solvent vapor exposure, of the , -phase conformation in poly(9,9-dioctylfluorene) (PFO). Significantly the conformation change approach preserves a planar film format and is found not to negatively impact on optical gain properties, both very attractive features for optoelectronic and photonic lightwave circuit applications. As a specific demonstration the ability to spatially control the lasing wavelength for samples in which a , -phase conformation is selectively patterned in a glassy PFO film spin coated atop a one-dimensional distributed-feedback grating etched into a spectrosil substrate is shown. [source] Hydrogel Patterning: (Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density) Adv.ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009Funct. In this paper by M. Guvendiren et al, a simple and robust method is used to generate a range of osmotically-driven surface patterns in hydrogels, including random, lamellar, peanut, and hexagonal structures. The patterns are fabricated by exposing a photocurable formulation to light while open to air and then swelling, using oxygen inhibition of the radical polymerization at the surface to create a gradient of crosslinking with depth. [source] Surface Patterning: Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro- and Nanopatterned Surfaces(Adv.ADVANCED FUNCTIONAL MATERIALS, Issue 18 2009Funct. This frontispiece image shows a multicomponent chip inspired by a vaccine node for specific T-cell stimulation, as described by Stern et al. on page 2888. The chip is functionalized with two different polymers (silver and black) as shown in the clockwise fabrication steps in the corners, each of which presents and releases different molecules necessary for stimulation. T-cells are stained red and dendritic cells are stained green. The inset image shows the reverse polymer pattern. [source] Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer CompositesADVANCED FUNCTIONAL MATERIALS, Issue 11 2009Tsedev Ninjbadgar Abstract Here, the facile synthesis of fluorescent ZrO2:Eu3+ nanoparticles with luminescence quantum yield of up to 8.7% that can be easily dispersed in organic solvents and utilized for the preparation of organic/inorganic volume holographic gratings is presented. The nanoparticles are prepared through a one-step solvothermal process resulting in spherical particles with a mean size of 4,nm that were highly crystalline directly after the synthesis, without any need for calcination treatment. Detailed luminescence studies of the nanoparticles as a function of Eu3+ content demonstrate that the dopant concentration and its site symmetry play an important role in the emissive properties and lifetime of the luminescent centers. It is shown that the luminescence quantum yield of the colloidal ZrO2:Eu3+ nanoparticles increases with dopant concentration up to a critical concentration of 11 mol% while the luminescence lifetime is shortened from 1.8 to 1.4 ms. Holographic photopolymerization of suitable monomer mixtures containing the luminescent nanoparticles demonstrated the ability to inscribe volume Bragg gratings (refractive index contrast n1 up to 0.011) with light-emissive properties, evidencing the high suitability of this approach for the fabrication of tailored nanomaterials for elaborate and demanding applications. [source] Red,Yellow Fluorescence Patterning of a Polymer Film Containing Phthalimido Carbamate GroupsADVANCED FUNCTIONAL MATERIALS, Issue 17 2007H. Chae Abstract Bicolor fluorescent micro-patterns in the polymer film are prepared through the use of a new group of photobase generator containing phthalimido carbamate groups. The photobase generation from phthalimide carbamates is studied by examining the changes in pH, fluorescence intensity, and photo-crosslinking of poly(glycidyl methacrylate). The product analysis of a model compound indicates that amine groups are produced from the photolytic cleavage of the C,N bond of the phthalimide carbamate groups. A copolymer containing phthalimide carbamate groups is applied to a bicolor fluorescent imaging material. Red-yellow fluorescent micropatterns are obtained by treating the copolymer film, which is irradiated with 254 nm UV light through a photomask, with fluorescamine and rhodamine, consecutively. Various colored fluorescent micropatterns , green, red, or red-yellow, are obtained on a single polymer film by varying the excitation wavelength. [source] Addressable Protein Patterning via Switchable Superhydrophobic Microarrays,ADVANCED FUNCTIONAL MATERIALS, Issue 15 2007J.-Y. Shiu Abstract We report on a simple process to create a switchable superhydrophobic surface where the water contact angle can be switched from a superhydrophobic state (ca.,167°) to a completely wetted state (<,10°). In the superhydrophobic state, the switchable superhydrophobic surface was resistant to the adsorption of proteins. However, once converted to a wetted state, the same surface promoted protein adsorption. We have developed a novel multicomponent protein-patterning technique based on this unique property of the switchable superhydrophobic surface. It is demonstrated that up to 100,×,100 protein spots can be created within one second. Each element on the switchable superhydrophobic microarray can be addressed individually and different types of biomolecules can be selectively deposited on the microarray without losing their activity. When integrated with microfluidic channels, the switchable superhydrophobic surface allows the parallel patterning of protein molecules to be carried out without cross contamination. [source] Simple Patterning via Adhesion between a Buffered-Oxide Etchant-Treated PDMS Stamp and a SiO2 Substrate,ADVANCED FUNCTIONAL MATERIALS, Issue 13 2007Y.-K. Kim Abstract A very simple polydimethylsiloxane (PDMS) pattern-transfer method is devised, called buffered-oxide etchant (BOE) printing. The mechanism of pattern transfer is investigated, by considering the strong adhesion between the BOE-treated PDMS and the SiO2 substrate. PDMS patterns from a few micrometers to sub-micrometer size are transferred to the SiO2 substrate by just pressing a stamp that has been immersed in BOE solution for a few minutes. The patterned PDMS layers work as perfect physical and chemical passivation layers in the fabrication of metal electrodes and V2O5 nanowire channels, respectively. Interestingly, a second stamping of the BOE-treated PDMS on the SiO2 substrate pre-patterned with metal as well as PDMS results in a selective transfer of the PDMS patterns only to the bare SiO2. In this way, the fabrication of a device structure consisting of two Au electrodes and V2O5 nanowire network channels is possible; non-ohmic semiconducting I,V characteristics, which can be modeled by serially connected percolation, are observed. [source] Cover Picture: Fabrication of Stable Metallic Patterns Embedded in Poly(dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on-a-Chip Device Patterning (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 4 2005Mater. Abstract A composite image is shown that highlights examples of device architectures that either incorporate or exploit polymer-embedded metallic microstructures. In work reported by Nuzzo and co-workers on p.,557, new applications of soft lithography, in conjunction with advanced forms of multilayer metallization, are used to construct these exceptionally durable structures. They are suitable for use in non-planar lithographic patterning, and as device components finding applications ranging from microelectronics to Lab-on-a-Chip analytical systems. This article describes the fabrication of durable metallic patterns that are embedded in poly(dimethylsiloxane) (PDMS) and demonstrates their use in several representative applications. The method involves the transfer and subsequent embedding of micrometer-scale gold (and other thin-film material) patterns into PDMS via adhesion chemistries mediated by silane coupling agents. We demonstrate the process as a suitable method for patterning stable functional metallization structures on PDMS, ones with limiting feature sizes less than 5,,m, and their subsequent utilization as structures suitable for use in applications ranging from soft-lithographic patterning, non-planar electronics, and microfluidic (lab-on-a-chip, LOC) analytical systems. We demonstrate specifically that metal patterns embedded in both planar and spherically curved PDMS substrates can be used as compliant contact photomasks for conventional photolithographic processes. The non-planar photomask fabricated with this technique has the same surface shape as the substrate, and thus facilitates the registration of structures in multilevel devices. This quality was specifically tested in a model demonstration in which an array of one hundred metal oxide semiconductor field-effect transistor (MOSFET) devices was fabricated on a spherically curved Si single-crystalline lens. The most significant opportunities for the processes reported here, however, appear to reside in applications in analytical chemistry that exploit devices fabricated using the methods of soft lithography. Toward this end, we demonstrate durably bonded metal patterns on PDMS that are appropriate for use in microfluidic, microanalytical, and microelectromechanical systems. We describe a multilayer metal-electrode fabrication scheme (multilaminate metal,insulator,metal (MIM) structures that substantially enhance performance and stability) and use it to enable the construction of PDMS LOC devices using electrochemical detection. A polymer-based microelectrochemical analytical system, one incorporating an electrode array for cyclic voltammetry and a microfluidic system for the electrophoretic separation of dopamine and catechol with amperometric detection, is demonstrated. [source] Colloidal-Crystal-Assisted Patterning of Crystalline MaterialsADVANCED MATERIALS, Issue 13 2010Cheng Li Abstract Colloidal crystals have shown great potential as versatile templates for the fabrication of patterned micro- and nanostructures with complex architectures and novel properties. The patterning of functional crystalline materials in two and three dimensions is essential to the realization of their applications in many technologically important fields. This article highlights some recent progress in the fabrication of 2D and 3D patterned crystalline materials with the assistance of colloidal crystals. By combining a bioinspired synthetic strategy based on a transient amorphous phase with a colloidal-crystal templating method, unique 3D ordered macroporous (3DOM) calcite single crystals can be created. Moreover, patterned arrays of regular ZnO nanopillars with controlled size, shape, and orientation can be fabricated via a facile wet chemical approach by using masks derived from monolayer colloidal crystals (MCC). [source] Patterning and Templating for NanoelectronicsADVANCED MATERIALS, Issue 6 2010Kosmas Galatsis Abstract The semiconductor industry will soon be launching 32,nm complementary metal oxide semiconductor (CMOS) technology node using 193,nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling. [source] Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic NanoparticlesADVANCED MATERIALS, Issue 5 2010Ramsés V. Martínez Patterning of single ferritin molecules by sequential (atomic force microscopy local oxidation) and parallel approaches (lithographically controlled wetting). The nanopattern size matches the size of the protein (,10 nm). Electrostatic interactions, capillary forces, surface functionalization, and nanolithography are used to achieve the desired protein organization. [source] Liquid-Crystal Patterning: Lithographic Alignment of Discotic Liquid Crystals: A New Time,Temperature Integrating Framework (Adv. Mater.ADVANCED MATERIALS, Issue 46 200946/2009) Liquid crystals are a successful example of how the control of self-assembly via chemical design leads to novel applications. Massimiliano Cavallini, Fabio Biscari, and co-workers report on p. 4688 that direct patterning of a continuous metal-free mesogenic phthalocyanine film (discotic LCs) is achieved by spatial control of column orientation using unconventional lithography. These patterned films work as time,temperature integrators at the columnar rectangular,hexagonal transition temperature. [source] Control over Patterning of Organic Semiconductors: Step-Edge-Induced Area-Selective Growth,ADVANCED MATERIALS, Issue 46 2009Wenchong Wang A method concerning step-edge-induced area-selective growth for the patterning of aromatic organic molecules is proposed. Based on such a growth mechanism, crack-free, organic crystalline films and the growth of different molecules at defined locations can be achieved. The figure shows a schematic representation of the separation of molecules by nucleation-sites recognition. [source] Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether SolventsADVANCED MATERIALS, Issue 22 2009Priscilla G. Taylor By employing benign process solvents and specially tailored photopolymers, organic electronic materials can be lithographically patterned. Furthermore, because the process is acid stable, this is an ideal candidate for patterning acidic PEDOT:PSS, an important material for organic electronics. Fabrication of a multilayer OTFT demonstrates the potential of this orthogonal patterning process. [source] Thermochemical Patterning of Polymer Thin Films With Tunable Size-Reduction Effects Using Metal-Coated Poly(dimethylsiloxane) StampsADVANCED MATERIALS, Issue 21 2009Fangfang Wang Metal-coated poly(dimethylsiloxane) (PDMS) stamps are treated as parallel microelectrodes to selectively induce thermochemical crosslinking of polymer thin films on Si substrates. Periodical polymer micro- and nanostructures with various size-reduction effects can be achieved by changing the conditions during metal deposition or modifying the surface of the metal-coated PDMS stamp. [source] "Dry" Patterning: Direct Patterning of Organic-Thin-Film-Transistor Arrays via a "Dry-Taping" Approach (Adv. Mater.ADVANCED MATERIALS, Issue 12 200912/2009) The cover shows the patterning of several solution- and vapor-deposited small molecule organic semiconductors using a dry taping approach. Zhenan Bao and co-workers demonstrate on page 1266 that this technique allows direct fabrication of large area arrays of bottom-contact high-performance organic thin-film field-effect transistors with self-aligned electrodes. Patterned devices exhibit significantly higher On/Off ratios and lower parasitic leakage than unpatterned ones. [source] A New Method of Carbon-Nanotube Patterning Using Reduction PotentialsADVANCED MATERIALS, Issue 12 2009Jong Hak Lee Noble metals promote the oxidation of carbon nanotubes (CNTs) at the relatively low temperature of 350,°C. The reduction potential of multiwalled CNTs is located between those of W and Ni, while that of single-walled CNTs is between those of Ni and In. Nanometer-sized patterns on CNT films were successfully fabricated using differences in reduction potential between the CNTs and noble metals. [source] |