Home About us Contact | |||
Pathways Used (pathway + used)
Selected AbstractsLack of dendritic cell maturation by the plant toxin ricinEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2004Daniel Abstract Several bacterial toxins either promote or inhibit the maturation of human monocyte-derived DC. Since the potent plant toxin ricin exploits the same cell entry pathway used by these bacterial toxins and shares identical catalytic activity with some of them, we have studied the capacity of ricin to induce DC maturation in vitro. Here, we show that in contrast to the bacterial proteins, ricin neither induces DC maturation nor interferes with LPS-induced DC maturation. There is no correlation between the absence of DC maturation and ricin dysfunction. Indeed, some of the ricin variants retain significant ribotoxicity and catalytic activity. We have extended these observations to ebulin-1, suggesting that this may be a general characteristic of plant-derived cytotoxic ribosome-inactivating toxins. The human immune system may therefore have evolved to recognize and rapidly respond to the bacterial proteins, whilst being less responsive to the equivalent plant cytotoxins. Understanding the effect of ricin on professional APC may provide insights into the generation of an anti-ricin vaccine and into the use of inactivated ricin A,chains as delivery vectors as part of a vaccination protocol. [source] The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathwayEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Lubica Kubikova Abstract The discrete neural network for songbird vocal communication provides an effective system to study neural mechanisms of learned motor behaviors in vertebrates. This system consists of two pathways , a vocal motor pathway used to produce learned vocalizations and a vocal pallial basal ganglia loop used to learn and modify the vocalizations. However, it is not clear how the loop exerts control over the motor pathway. To study the mechanism, we used expression of the neural activity-induced gene ZENK (or egr-1), which shows singing-regulated expression in a social context-dependent manner: high levels in both pathways when singing undirected and low levels in the lateral part of the loop and in the robust nucleus of the arcopallium (RA) of the motor pathway when singing directed to another animal. Here, we show that there are two parallel interactive parts within the pallial basal ganglia loop, lateral and medial, which modulate singing-driven ZENK expression of the motor pathway nuclei RA and HVC, respectively. Within the loop, the striatal and pallial nuclei appear to have opposing roles; the striatal vocal nucleus lateral AreaX is required for high ZENK expression in its downstream nuclei, particularly during undirected singing, while the pallial vocal lateral magnocellular nucleus of the anterior nidopallium is required for lower expression, particularly during directed singing. These results suggest a dynamic molecular interaction between the basal ganglia pathway and the motor pathway during production of a learned motor behavior. [source] Type III secretion: The bacteria-eukaryotic cell expressFEMS MICROBIOLOGY LETTERS, Issue 1 2005Luís Jaime Mota Abstract Type III secretion (T3S) is an export pathway used by Gram-negative pathogenic bacteria to inject bacterial proteins into the cytosol of eukaryotic host cells. This pathway is characterized by (i) a secretion nanomachine related to the bacterial flagellum, but usually topped by a stiff needle-like structure; (ii) the assembly in the eukaryotic cell membrane of a translocation pore formed by T3S substrates; (iii) a non-cleavable N-terminal secretion signal; (iv) T3S chaperones, assisting the secretion of some substrates; (v) a control mechanism ensuring protein delivery at the right place and time. Here, we review these different aspects focusing in open questions that promise exciting findings in the near future. [source] Granzyme B: a natural born killerIMMUNOLOGICAL REVIEWS, Issue 1 2003Sarah J. Lord Summary:, A main pathway used by cytotoxic T lymphocytes (CTLs) and natural killer cells to eliminate pathogenic cells is via exocytosis of granule components in the direction of the target cell, delivering a lethal hit of cytolytic molecules. Amongst these, granzyme B and perforin have been shown to induce CTL-mediated target cell DNA fragmentation and apoptosis. Once released from the CTL, granzyme B binds its receptor, the mannose-6-phosphate/insulin-like growth factor II receptor, and is endocytosed but remains arrested in endocytic vesicles until released by perforin. Once in the cytosol, granzyme B targets caspase-3 directly or indirectly through the mitochondria, initiating the caspase cascade to DNA fragmentation and apoptosis. Caspase activity is required for apoptosis to occur; however, in the absence of caspase activity, granzyme B can still initiate mitochondrial events via the cleavage of Bid. Recent work shows that granzyme B-mediated release of apoptotic factors from the mitochondria is essential for the full activation of caspase-3. Thus, granzyme B acts at multiple points to initiate the death of the offending cell. Studies of the granzyme B death receptor and internal signaling pathways may lead to critical advances in cell transplantation and cancer therapy. [source] SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesisMOLECULAR MICROBIOLOGY, Issue 1 2001Kenneth S. Bruno In the filamentous fungus, Aspergillus nidulans, multiple rounds of nuclear division occur before cytokinesis, allowing an unambiguous identification of genes required specifically for cytokinesis. As in animal cells, both an intact microtubule cytoskeleton and progression through mitosis are required for actin ring formation and contraction. The sepH gene from A. nidulans was discovered in a screen for temperature-sensitive cytokinesis mutants. Sequence analysis showed that SEPH is 42% identical to the serine,threonine kinase Cdc7p from fission yeast. Signalling through the Septation Initiation Network (SIN), which includes Cdc7p and the GTPase Spg1p, is emerging as a primary regulatory pathway used by fission yeast to control cytokinesis. A similar group of proteins comprise the Mitotic Exit Network (MEN) in budding yeast. This is the first direct evidence for the existence of a functional SIN,MEN pathway outside budding and fission yeast. In addition to SEPH, potential homologues were also identified in other fungi and plants but not in animal cells. Deletion of sepH resulted in a viable strain that failed to septate at any temperature. Interestingly, quantitative analysis of the actin cytoskeleton revealed that sepH is required for construction of the actin ring. Therefore, SEPH is distinct from its counterpart in fission yeast, in which SIN components operate downstream of actin ring formation and are necessary for ring contraction and later events of septation. We conclude that A. nidulans has components of a SIN,MEN pathway, one of which, SEPH, is required for early events during cytokinesis. [source] Resistant macromolecules of extant and fossil microalgaePHYCOLOGICAL RESEARCH, Issue 4 2004Gerard J. M. Versteegh SUMMARY The occurrence and composition of macromolecular resistant walls of microalgae and their fossil macromolecular counterparts are reviewed. To date, several algal groups have been identified to produce fossilizable biomacromolecules. Only two biosynthetic pathways seem to be responsible for this, of which the acetate/malate pathway used by Chlorophyta, Eustigmatophyta and Dinophyta is considered to lead to a series of closely related resistant biomacromolecules, called algaenans. Algaenans consist of a network of predominantly linear carbon chains. A different, as yet unidentified, pathway is used by the Dinophyta to produce the aromatic walls of their cysts. The poly-ketide or acetogenic pathway may have been responsible for resorcinol-based algae or bacteria-derived microfossils of the acritarch Gloeocapsamorpha prisca, either through synthesis of the biomacromolecule or through a third pathway, the post-mortem polymerization of its resorcinol lipids. The postmortem polymerization of lipids also appears to be responsible for the formation of fatty acid-based macromolecules in Eocene dinoflagellate-shaped remains from Pakistan. Finally, there is a clear need for elucidating the chemical differences between the biomacromolecules produced by the algae and their fossil analogs in the sediments. This notably applies to the release and condensation of aliphatic and aromatic moieties both at normal and at elevated temperature and pressure conditions. [source] Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleusTHE PLANT JOURNAL, Issue 1 2009Michael Mishkind Summary Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) rapidly accumulate, with the heat-induced PIP2 localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP2 occur within several minutes of temperature increases from ambient levels of 20,25°C to 35°C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP2 response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP2 phosphatase. Inhibitor experiments suggest that the PIP2 response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP2 increases. These results are discussed in the context of the diverse cellular roles played by PIP2 and PA, including regulation of ion channels and the cytoskeleton. [source] Manganese cell labeling of murine hepatocytes using manganese(III)-transferrin,CONTRAST MEDIA & MOLECULAR IMAGING, Issue 3 2008Christopher H. Sotak Abstract Manganese(III)-transferrin [Mn(III),Tf] was investigated as a way to accomplish manganese-labeling of murine hepatocytes for MRI contrast. It is postulated that Mn(III),Tf can exploit the same transferrin-receptor-dependent and -independent metabolic pathways used by hepatocytes to transport the iron analog Fe(III),Tf. More specifically, it was investigated whether manganese delivered by transferrin could give MRI contrast in hepatocytes. Comparison of the T1 and T2 relaxation times of Mn(III),Tf and Fe(III),Tf over the same concentration range showed that the r1 relaxivities of the two metalloproteins are the same in vitro, with little contribution from paramagnetic enhancement. The degree of manganese cell labeling following incubation for 2,7,h in 31.5,µm Mn(III),Tf was comparable to that of hepatocytes incubated in 500,µm Mn2+ for 1,h. The intrinsic manganese tissue relaxivity between Mn(III),Tf-labeled and Mn2+ -labeled cells was found to be the same, consistent with Mn(III) being released from transferrin and reduced to Mn2+. For both treatment regimens, manganese uptake by hepatocytes appeared to saturate in the first 1,2,h of the incubation period and may explain why the efficiency of hepatocyte cell labeling by the two methods appeared to be comparable in spite of the ,16-fold difference in effective manganese concentration. Hepatocytes continuously released manganese, as detected by MRI, and this was the same for both Mn2+ - and Mn(III),Tf-labeled cells. Manganese release may be the result of normal hepatocyte function, much in the same way that hepatocytes excrete manganese into the bile in vivo. This approach exploits a biological process,namely receptor binding, endocytosis and endosomal acidification,to initiate the release of an MRI contrast agent, potentially conferring more specificity to the labeling process. The ubiquitous expression of transferrin receptors by eukaryotic cells should make Mn(III),Tf particularly useful for manganese labeling of a wide variety of cells both in culture and in vivo. Published in 2008 by John Wiley & Sons, Ltd. [source] Calmodulin and profilin coregulate axon outgrowth in DrosophilaDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001You-Seung Kim Abstract Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 26,38, 2001 [source] Degradation of alkanes by bacteriaENVIRONMENTAL MICROBIOLOGY, Issue 10 2009Fernando Rojo Summary Pollution of soil and water environments by crude oil has been, and is still today, an important problem. Crude oil is a complex mixture of thousands of compounds. Among them, alkanes constitute the major fraction. Alkanes are saturated hydrocarbons of different sizes and structures. Although they are chemically very inert, most of them can be efficiently degraded by several microorganisms. This review summarizes current knowledge on how microorganisms degrade alkanes, focusing on the biochemical pathways used and on how the expression of pathway genes is regulated and integrated within cell physiology. [source] In-Hive Behavior of Pollen Foragers (Apis mellifera) in Honey Bee Colonies Under Conditions of High and Low Pollen NeedETHOLOGY, Issue 3 2002Anja Weidenmüller Pollen collection in honey bees is regulated around a homeostatic set-point. How the control of pollen collection is achieved is still unclear. Different feedback mechanisms have been proposed but little is known about the experience of pollen foragers in the hive. A detailed documentation of the behavior of pollen foragers in the hive under different pollen need conditions is presented here. Taking a broad observational approach, we analyze the behavior of individual pollen foragers in the hive between collecting trips and quantify the different variables constituting the in-hive stay. Comparing data from two colonies and 143 individuals during experimentally induced times of low vs. times of high pollen need, we show that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need by their colony was high. Furthermore, our data show a significant change in the trophallactic experience of pollen foragers with changing pollen need conditions of their colony. Pollen foragers had more short (< 3 s) trophallactic contacts when pollen need was high, resulting in an increase of total number of trophallactic contacts. Thus, our results support the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need. [source] Tolerance to low O2: lessons from invertebrate genetic modelsEXPERIMENTAL PHYSIOLOGY, Issue 2 2006Gabriel G. Haddad There have been extensive studies and experiments on cells, tissues and animals that are susceptible to low O2, and many pathways have been discovered that can lead to injury in mammalian tissues. But other pathways that can help in the survival of low O2 have also been discovered in these same tissues. It should be noted, however, that the mechanisms that can lead to better survival in susceptible mammalian tissues have quantitatively a ,narrow range' for recovery, since these tissues are inherently at risk. Another strategy for understanding the susceptibility of organisms is to learn about pathways used by anoxia-resistant animals. Approximately a decade ago, I and my co-workers discovered that one such animal, Drosophila melanogaster, is very tolerant of low O2. Here, I detail some of the studies that we performed and the strategies that we developed to understand the mechanisms that underlie the fascinating resistance of Drosophila to measured partial pressure of O2 of zero. We employed three ideas to try to address our questions: (1) mutagenesis screens to identify loss-of-function mutants; (2) microarrays on adapted versus naïve flies; and (3) studying cell biology and physiology of genes that seem important in flies and mammals. The hope is to learn from these studies about the fundamental basis of tolerance to the lack of O2, and with this knowledge be able to develop better therapies for the future. [source] DNA repair pathways involved in anaphase bridge formationGENES, CHROMOSOMES AND CANCER, Issue 6 2007Ceyda Acilan Cancer cells frequently exhibit gross chromosomal alterations such as translocations, deletions, or gene amplifications an important source of chromosomal instability in malignant cells. One of the better-documented examples is the formation of anaphase bridges,chromosomes pulled in opposite directions by the spindle apparatus. Anaphase bridges are associated with DNA double strand breaks (DSBs). While the majority of DSBs are repaired correctly, to restore the original chromosome structure, incorrect fusion events also occur leading to bridging. To identify the cellular repair pathways used to form these aberrant structures, we tested a requirement for either of the two major DSB repair pathways in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). Our observations show that neither pathway is essential, but NHEJ helps prevent bridges. When NHEJ is compromised, the cell appears to use HR to repair the break, resulting in increased anaphase bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to have a positive trend with induction of bridges from DNA damage. © 2007 Wiley-Liss, Inc. [source] New Patterns of Youth Transition in EducationINTERNATIONAL SOCIAL SCIENCE JOURNAL, Issue 164 2000Johanna Wyn Current research provides evidence that new relationships are being forged between youth people and education. Increased participation in post-compulsory education, combinations of work and study and uncertain career outcomes havebecome common experiences. There is an emerging disparity between the stated goals of education and the changing priorities and choices of young people. In particular, the linear notion of transitions, expressed in the metaphorsof pathways used in policy documents, is increasingly at odds with the patterns of life experienced by young people in many nations. Three themes stand out in the research on young people in the 1990s. First, an awareness of foreclosed options in educational outcomes is a consistent thread across a range of studies. Secondly, there is a discernible shift by the end of the 1990s toward more complex life-patterns and a blending or balancing of a range of personal priorities and interests. Thirdly, the need to give ,active voice' to young people about the dramatic social and economic changes they have been subjected to, is unmistakable in the light of the increasing disparity between the rhetoric of youth and education policy and their own experience of its out-comes. [source] Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell bindingMOLECULAR MICROBIOLOGY, Issue 5 2003Nikhat Parveen Summary The Lyme disease spirochaete, Borrelia burgdorferi, is transmitted to mammals by Ixodes ticks and can infect multiple tissues. Host cell attachment may be critical for tissue colonization, and B. burgdorferi cultivated in vitro recognizes heparin- and dermatan sulphate-related glycosaminoglycans (GAGs) on the surface of mammalian cells. To determine whether growth of the spirochaete in the mammalian host alters GAG binding, we assessed the cell attachment activities of B. burgdorferi grown in vitro or in dialysis membrane chambers implanted intraperitoneally in rats. Host-adapted B. burgdorferi exhibited approximately threefold better binding to purified heparin and dermatan sulphate and to GAGs expressed on the surface of cultured endothelial cells. Three B. burgdorferi surface proteins, Bgp, DbpA and DbpB, have been demonstrated previously to bind to GAGs or to GAG-containing molecules, and we show here that recombinant derivatives of each of these proteins were able to bind to purified heparin and dermatan sulphate. Immunofluorescent staining of in vitro -cultivated or host-adapted spirochaetes revealed that DbpA and DbpB were present on the bacterial surface at higher levels after host adaptation. Recombinant Bgp, DbpA and DbpB each partially inhibited attachment of host-adapted B. burgdorferi to cultured mammalian cells, consistent with the hypothesis that these proteins may promote attachment of B. burgdorferi during growth in the mammalian host. Nevertheless, the partial nature of this inhibition suggests that multiple pathways promote mammalian cell attachment by B. burgdorferi in vivo. Given the observed increase in cell attachment activity upon growth in the mammalian host, analysis of host-adapted bacteria will facilitate identification of the cell binding pathways used in vivo. [source] The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skinBRITISH JOURNAL OF DERMATOLOGY, Issue 1 2005C. Johansen Summary Background, Alterations in specific signal transduction pathways may explain the hyperproliferation and abnormal differentiation of the keratinocytes as well as the increased expression of inflammatory cytokines seen in psoriasis. Major signalling pathways used by eukaryotic cells to transduce extracellular signals into cellular responses impinge on the mitogen-activated protein kinases (MAPKs). Objectives, To investigate the expression of the MAPK p38, extracellular signal-regulated kinase (ERK) and c-Jun NH2 -terminal kinase (JNK) in psoriatic skin. Methods, Keratome biopsies were taken from patients with plaque-type psoriasis. Western blot analysis was used to determine p38, ERK and JNK activity and protein levels, whereas kinase assays were used to examine the kinase activity of p38. Results, We demonstrated increased levels of the phosphorylated forms of p38 and ERK1/2 in lesional psoriatic skin compared with nonlesional psoriatic skin. No abnormality was found in the activation and expression of JNK1/2. Ex vivo kinase assays confirmed the increased activation of p38, and furthermore demonstrated increased kinase activity of the p38 isoforms p38,, p38, and p38, in lesional compared with nonlesional psoriatic skin. p38, was not detected in the psoriatic skin. Clearance of the psoriatic lesions, induced by climatotherapy at the Dead Sea for 4 weeks, led to a normalization in the activity of both p38 and ERK1/2. Conclusions, Taken together, our results demonstrate that the activity of the MAPKs p38,, p38, and p38, and ERK1/2 are increased in lesional psoriatic skin compared with nonlesional psoriatic skin, and that clearance of psoriasis normalizes the p38 and ERK1/2 activity. Thus, p38 and ERK1/2 might be potential targets in the treatment of psoriasis. [source] |