Home About us Contact | |||
Pathophysiological Background (pathophysiological + background)
Selected AbstractsDystonia: A disorder of motor programming or motor execution?MOVEMENT DISORDERS, Issue 6 2002Petr Ka, ovský MD Abstract For some time, dystonia has been seen as purely a motor disorder. Relatively novel concepts published approximately 10 years ago also presumed that in the development of dystonic dyskinesias, only motor behaviour was abnormal. Neurophysiological observations of various types of dystonic disorders, which were performed using sophisticated electromyography, polymyography, H-reflex examination, long-latency reflex, etc., as well as new insights into the behaviour of dystonia, have urged the inclusion of sensory (particularly somatosensory) mechanisms into the pathophysiological background of dystonia. The major role has been considered to be played by abnormal proprioceptive input by means of the Ia proprioceptive afferents, with the source of this abnormality found in the abnormal processing of muscle spindle afferent information. However, neurophysiological investigations have also provided evidence that the abnormality in the central nervous system is located not only at the spinal and subcortical level, but also at the cortical level; specifically, the cortical excitability and intracortical inhibition have been revealed as abnormal. This evidence was revealed by SEP recordings, paired transcranial magnetic stimulation recordings, and BP and CNV recordings. The current concept of dystonic movement connects the abnormal function of somatosensory pathways and somatosensory analysers with the dystonic performance of motor action, which is based on the abnormality of sensorimotor integration. © 2002 Movement Disorder Society [source] Baroreflex Sensitivity: Measurement and Clinical ImplicationsANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2008Maria Teresa La Rovere M.D. Alterations of the baroreceptor-heart rate reflex (baroreflex sensitivity, BRS) contribute to the reciprocal reduction of parasympathetic activity and increase of sympathetic activity that accompany the development and progression of cardiovascular diseases. Therefore, the measurement of the baroreflex is a source of valuable information in the clinical management of cardiac disease patients, particularly in risk stratification. This article briefly recalls the pathophysiological background of baroreflex control, and reviews the most relevant methods that have been developed so far for the measurement of BRS. They include three "classic" methods: (i) the use of vasoactive drugs, particularly the ,-adrenoreceptor agonist phenylephrine, (ii) the Valsalva maneuver, which produces a natural challenge for the baroreceptors by voluntarily increasing intrathoracic and abdominal pressure through straining, and (iii) the neck chamber technique, which allows a selective activation/deactivation of carotid baroreceptors by application of a negative/positive pressure to the neck region. Two more recent methods based on the analysis of spontaneous oscillations of systolic arterial pressure and RR interval are also reviewed: (i) the sequence method, which analyzes the relationship between increasing/decreasing ramps of blood pressure and related increasing/decreasing changes in RR interval through linear regression, and (ii) spectral methods, which assess the relationship (in terms of gain) between specific oscillatory components of the two signals. The limitations of the coherence criterion for the computation of spectral BRS are discussed, and recent proposals for overcoming them are presented. Most relevant clinical applications of BRS measurement are finally reviewed with particular reference to patients with myocardial infarction and heart failure. [source] Diagnosis and treatment of low-renin hypertensionCLINICAL ENDOCRINOLOGY, Issue 3 2007Paolo Mulatero Summary Plasma renin levels can be used to classify hypertension. A significant proportion of hypertensive individuals display a low-renin profile and thus low-renin hypertension (LRH) requires appropriate diagnosis and treatment. LRH includes essential, secondary and genetic forms, the most common of which are low-renin essential hypertension and primary aldosteronism. Several studies have investigated the relationship between PRA status and clinical response to different antihypertensive therapies. The present review will discuss the differential diagnosis of LRH subtypes and the most appropriate treatment options based on the pathophysiological background of this condition. [source] Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamicsCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 5 2001Mikko P. Tulppo Breakdown of short-term fractal-like behaviour of HR indicates an increased risk for adverse cardiovascular events and mortality, but the pathophysiological background for altered fractal HR dynamics is not known. Our aim was to study the effects of pharmacological modulation of autonomic function on fractal correlation properties of heart rate (HR) variability in healthy subjects. Short-term fractal scaling exponent (,1) along with spectral components of HR variability were analysed during the following pharmacological interventions in healthy subjects: (i) noradrenaline (NE) infusion (n=22), (ii) NE infusion after phentolamine (PHE) (n=8), (iii) combined NE + adrenaline (EPI) infusion (n=12), (iv) vagal blockade with high dose of atropine (n=10), (v) and vagal activation by low dose of atropine (n=10). Then ,1 decreased progressively during the incremental doses of NE (from 0·85 ± 0·250 to 0.55 ± 0·23, P<0·0001). NE also decreased the average HR (P<0·001) and increased the high frequency spectral power (P<0·001). Vagal blockade with atropine increased the ,1 value (from 0·82 ± 0·22 to 1·24 ± 0·41, P<0·05). Combined NE + EPI infusion and vagal activation with a low dose atropine did not result in any changes in ,1, and ,-adrenergic blockade by PHE did not completely reverse the effects of NE on ,1. Increased levels of circulating NE result in reduction of short-term correlation properties of HR dynamics. The results suggest that coactivation of cardiac vagal outflow at the time of high levels of a circulating sympathetic transmitter explains the breakdown of fractal-like behaviour of human HR dynamics. [source] |