Home About us Contact | |||
Path Integration (path + integration)
Selected AbstractsHoming in German Cockroaches, Blattella germanica (L.) (Insecta: Dictyoptera): Multi-Channelled Orientation CuesETHOLOGY, Issue 10 2004Colette Rivault Cockroaches use navigational cues to elaborate their return path to the shelter. Our experiments investigated how individuals weighted information to choose where to search for the shelter in situations where path integration, visual and olfactory cues were conflicting. We showed that homing relied on a complex set of environmental stimuli, each playing a particular part. Path integration cues give cockroaches an estimation of the position of their goal, visual landmarks guide them to that position from a distance, while olfactory cues indicate the end of the path. Cockroaches gave the greatest importance to the first cues they encountered along their return path. Nevertheless, visual cues placed beyond aggregation pheromone deposits reduced their arrest efficiency and induced search in the area near the visual cues. [source] Lesions of the mammillary body region alter hippocampal movement signals and theta frequency: Implications for path integration modelsHIPPOCAMPUS, Issue 9 2008Patricia E. Sharp Abstract Cells throughout the hippocampal formation are involved in processing spatial information. These same cells also show an influence of locomotor activity, and these movement signals are thought to be critical for the path integration abilities of these cells. Nuclei in the mammillary region provide ascending influences to the hippocampal formation and have been implicated in influencing both hippocampal spatial and theta signals. Here, we report the effects of mammillary lesions on movement-related signals in several hippocampal subregions. We find first, as predicted by earlier work, these lesions cause an approximately 1 Hz reduction in the frequency of theta modulation of cell firing. According to recent theoretical work, this might, in turn, be expected to influence the size of hippocampal place fields. Our data do not confirm this prediction for any of the hippocampal regions examined. Second, we report lesion effects on the relationship between firing rate and running speed for the hippocampal cells. These lesions caused a reduction in both the slope and intercept of rate-by-speed functions for cells in the hippocampus and postsubiculum. Surprisingly, cells in subiculum showed an opposite effect, so that the excitatory influence of locomotion was enhanced. Path integration theories predict that the speed at which path integration occurs is related to the strength of this movement signal. In remarkable accordance with this prediction, we report that the timing of the place cell signals is slowed following mammillary lesions for hippocampal and postsubicular cells, but, in contrast, is speeded up for subicular cells. In fact, the timing for place signals across lesion condition and brain region is predicted by a single linear function which relates timing to the strength of the running speed signal. Thus, these data provide remarkable support for some aspects of current path integration theory, while posing a challenge for other aspects of these same theories. © 2008 Wiley-Liss, Inc. [source] Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memoryHIPPOCAMPUS, Issue 7 2005György Buzsáki Abstract Five key topics have been reverberating in hippocampal-entorhinal cortex (EC) research over the past five decades: episodic and semantic memory, path integration ("dead reckoning") and landmark ("map") navigation, and theta oscillation. We suggest that the systematic relations between single cell discharge and the activity of neuronal ensembles reflected in local field theta oscillations provide a useful insight into the relationship among these terms. In rats trained to run in direction-guided (1-dimensional) tasks, hippocampal cell assemblies discharge sequentially, with different assemblies active on opposite runs, i.e., place cells are unidirectional. Such tasks do not require map representation and are formally identical with learning sequentially occurring items in an episode. Hebbian plasticity, acting within the temporal window of the theta cycle, converts the travel distances into synaptic strengths between the sequentially activated and unidirectionally connected assemblies. In contrast, place representations by hippocampal neurons in 2-dimensional environments are typically omnidirectional, characteristic of a map. Generation of a map requires exploration, essentially a dead reckoning behavior. We suggest that omnidirectional navigation through the same places (junctions) during exploration gives rise to omnidirectional place cells and, consequently, maps free of temporal context. Analogously, multiple crossings of common junction(s) of episodes convert the common junction(s) into context-free or semantic memory. Theta oscillation can hence be conceived as the navigation rhythm through both physical and mnemonic space, facilitating the formation of maps and episodic/semantic memories. © 2005 Wiley-Liss, Inc. [source] |