Home About us Contact | |||
Artificial Ponds (artificial + pond)
Selected AbstractsThe effects of dispersal and recruitment limitation on community structure of odonates in artificial pondsECOGRAPHY, Issue 4 2006Shannon J. McCauley I examined the effects of isolation on the structure of both adult and larval dragonfly (Odonata: Anisoptera) communities forming at physically identical artificial ponds over two years. Isolation, whether measured by distance to the nearest source habitat or by connectivity to multiple sources, was significantly negatively related to the species richness of dragonflies observed at and collected in these ponds. These results indicate that dispersal and recruitment limitation acted as filters on the richness of communities at these artificial ponds. The richness of larval recruits in artificial ponds was lower than the richness of adult dispersers observed at ponds, and distance from a source habitat explained a greater fraction of the variation in larval than adult richness (83 and 50%, respectively). These results and a male biased sex-ratio in adults observed at artificial ponds suggest that isolated habitats may be more recruitment limited than observations of dispersers would suggest. A Mantel test indicated there was a spatial component to the composition of communities forming in tanks, and that distance between tanks and community dissimilarity (1-Jaccard's) were significantly positively related (r=0.52). This pattern suggests that their position with respect to alternative source environments influenced the composition of the communities that recruited into these ponds. These results provide further evidence of recruitment limitation in this system. Results from this study highlight the importance behaviorally limited dispersal may have in taxa morphologically capable of broad dispersal and suggest that the role of dispersal and recruitment limitation may be critical in shaping community structure across habitat gradients that include variation in habitat duration. [source] Biological warfare in the garden pond: tadpoles suppress the growth of mosquito larvaeECOLOGICAL ENTOMOLOGY, Issue 1 2003Allie Mokany Abstract. 1. Although tadpoles and mosquito larvae may compete for scarce resources in natural freshwater systems, the mechanisms involved in such competition remain largely unstudied. 2. Replicated artificial ponds were set up to examine the role of pathogenic interference (water-borne growth inhibitors) in two tadpole,mosquito systems from south-eastern Australia. One system comprised taxa that are commonly sympatric in freshwater ponds (tadpoles of Limnodynastes peronii and larvae of Culex quinquefasciatus) while the other comprised species that co-occur in brackish water ponds (tadpoles of Crinia signifera and larvae of Ochlerotatus australis). 3. Water that had previously contained tadpoles suppressed the rates of survival and pupation of mosquito larvae in both systems. Fungicide reduced or eliminated this effect, suggesting that the growth inhibitors may be fungal organisms (possibly the yeast Rhodotorula glutinis) from tadpole faeces. Fungicide also enhanced growth rates of tadpoles. 4. These results suggest that interference competition between tadpoles and mosquito larvae is mediated by other organisms in some ecological systems. [source] The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphytonJOURNAL OF ECOLOGY, Issue 1 2002J. Iwan Jones Summary 1We studied the growth of a submerged aquatic plant in relation to periphytic and planktonic algae over a range of nutrient and dissolved inorganic carbon (DIC) availabilities. 2In consecutive years two factorial experiments were conducted in 48 artificial ponds (each 3.14 m3), comprising four concentrations of DIC (1.5, 2.5, 3.5 or 4.5 mm) each crossed with three separate nutrient loadings (10 µg L,1 P and 0.2 mg L N, 50 µg L,1 P and 1 mg L N, or 200 µg L,1 P and 4 mg L N). The second experiment differed by the inclusion of fish in the ponds. 3In the first year DIC had no effect on plant growth, but nutrient loading did. Plants failed to grow in treatments where phytoplankton density was high (> 100 µg L,1). Where phytoplankton was low, high numbers of invertebrates colonized the ponds, and periphyton abundance on the plants was low. In the second year, where phytoplankton never achieved the densities of the previous year, there was a significant effect of DIC concentration on plant growth but not of nutrients. Invertebrate abundance was lower and periphyton on the plants correspondingly higher. 4In both years increased nutrient loading had no effect on the abundance of periphyton growing on the surface of the plants. Periphyton abundance was determined by the density of grazing invertebrates in the ponds. 5There was a negative relationship between periphyton density and final plant density, which became significantly less steep with increasing DIC, indicating that periphyton and plants were competing for carbon. 6DIC concentration has the potential to influence community structure in shallow lakes, altering competitive interactions between periphyton and plants and rendering low DIC lakes more prone to loss of plants when nutrient loading increases. However, the expression of this competition between periphyton and plants will depend on the density of grazing invertebrates present, which is itself influenced by the intensity of fish predation on those invertebrates. [source] |