Particular Drug (particular + drug)

Distribution by Scientific Domains


Selected Abstracts


Dynamics in the use of drugs

HEALTH ECONOMICS, Issue 12 2006
Jan C. van Ours
Abstract This paper uses information about prime age individuals living in Amsterdam to study the dynamics in the use of tobacco, cannabis, and cocaine. The analysis examines transitions from non-use to use, as well as transitions from use to non-use. Particular attention is given to the effect of the age of onset on quitting behavior. The empirical analysis shows that for most of the drugs investigated, the earlier individuals start using a particular drug the less likely they are to stop using that drug. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Principles of pharmacodynamics and their applications in veterinary pharmacology

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2004
P. LEES
Pharmacodynamics (PDs) is the science of drug action on the body or on microorganisms and other parasites within or on the body. It may be studied at many organizational levels , sub-molecular, molecular, cellular, tissue/organ and whole body , using in vivo, ex vivo and in vitro methods and utilizing a wide range of techniques. A few drugs owe their PD properties to some physico-chemical property or action and, in such cases, detailed molecular drug structure plays little or no role in the response elicited. For the great majority of drugs, however, action on the body is crucially dependent on chemical structure, so that a very small change, e.g. substitution of a proton by a methyl group, can markedly alter the potency of the drug, even to the point of loss of activity. In the late 19th century and first half of the 20th century recognition of these facts by Langley, Ehrlich, Dale, Clarke and others provided the foundation for the receptor site hypothesis of drug action. According to these early ideas the drug, in order to elicit its effect, had to first combine with a specific ,target molecule' on either the cell surface or an intracellular organelle. It was soon realized that the ,right' chemical structure was required for drug,target site interaction (and the subsequent pharmacological response). In addition, from this requirement, for specificity of chemical structure requirement, developed not only the modern science of pharmacology but also that of toxicology. In relation to drug actions on microbes and parasites, for example, the early work of Ehrlich led to the introduction of molecules selectively toxic for them and relatively safe for the animal host. In the whole animal drugs may act on many target molecules in many tissues. These actions may lead to primary responses which, in turn, may induce secondary responses, that may either enhance or diminish the primary response. Therefore, it is common to investigate drug pharmacodynamics (PDs) in the first instance at molecular, cellular and tissue levels in vitro, so that the primary effects can be better understood without interference from the complexities involved in whole animal studies. When a drug, hormone or neurotransmitter combines with a target molecule, it is described as a ligand. Ligands are classified into two groups, agonists (which initiate a chain of reactions leading, usually via the release or formation of secondary messengers, to the response) and antagonists (which fail to initiate the transduction pathways but nevertheless compete with agonists for occupancy of receptor sites and thereby inhibit their actions). The parameters which characterize drug receptor interaction are affinity, efficacy, potency and sensitivity, each of which can be elucidated quantitatively for a particular drug acting on a particular receptor in a particular tissue. The most fundamental objective of PDs is to use the derived numerical values for these parameters to classify and sub-classify receptors and to compare and classify drugs on the basis of their affinity, efficacy, potency and sensitivity. This review introduces and summarizes the principles of PDs and illustrates them with examples drawn from both basic and veterinary pharmacology. Drugs acting on adrenoceptors and cardiovascular, non-steroidal anti-inflammatory and antimicrobial drugs are considered briefly to provide a foundation for subsequent reviews in this issue which deal with pharmacokinetic (PK),PD modelling and integration of these drug classes. Drug action on receptors has many features in common with enzyme kinetics and gas adsorption onto surfaces, as defined by Michaelis,Menten and Langmuir absorption equations, respectively. These and other derived equations are outlined in this review. There is, however, no single theory which adequately explains all aspects of drug,receptor interaction. The early ,occupation' and ,rate' theories each explain some, but not all, experimental observations. From these basic theories the operational model and the two-state theory have been developed. For a discussion of more advanced theories see Kenakin (1997). [source]


Suicide risk during anticonvulsant treatment,

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 5 2010
Maurizio Pompili MD
Abstract Recent research findings suggest possible increases in risk of suicidal behaviors among patients treated with anticonvulsants. The available evidence appears to support such a risk more clearly for patients diagnosed with epilepsy rather than with primary psychiatric disorders. However, the studies involved are limited by providing associational findings that may be confounded by several uncontrolled variables. Such limitations should be considered in future research on adverse effects of anticonvulsants and other centrally acting drugs. For now, however, clinical prudence calls for routine, ongoing assessment of mood and suicidal thoughts among neurological or psychiatric patients, whether or not treated with particular drugs. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Case ascertainment and estimated incidence of drug-induced long-QT syndrome: study in Southwest France

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 3 2008
Mariam Molokhia
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , Drug-induced long-QT syndrome (LQTS) is a potentially fatal condition that has led to a number of postmarketing withdrawals in recent years. , However, many cases may not survive long enough to reach hospital, and only a small proportion are reported to pharmacovigilance agencies. , The extent to which genetic determinants of susceptibility to LQTS are specific to particular drugs, or common to several classes of drug, remains to be determined. WHAT THIS STUDY ADDS , We estimated population prevalence of drug-induced LQTS in the Midi-Pyrenees region, southwest France, using five different institutions and assessed feasibility of tracing potential cases (in addition to pharmacovigilance data), using hospital data and rigorous case definition. , These methods can be adapted to a wider region, used to augment pharmacovigilance reporting, and offer researchers the opportunity to study genetic susceptibility to drug-induced LQTS. AIMS The aim of this study was to investigate the incidence and reporting rate of drug-induced long-QT syndrome (LQTS) in France [defined by evidence of torsades de pointes (TdP), QT prolongation and exposure to a relevant drug] and to assess feasibility of case collection for drug-induced LQTS. METHODS A retrospective population-based study was carried out in Southwest France in five institutions: three main hospitals, one private clinic and one cardiac emergency unit, searched from 1 January 1999 to 1 January 2005 (population coverage of 614 000). The study population consisted of 861 cases with International Classification of Diseases-10 diagnostic codes for ventricular tachycardia (I147.2), ventricular fibrillation (I149.0) and sudden cardiac death (I146.1) from hospital discharge summaries, supplemented by cases reported to national or regional pharmacovigilance systems, and voluntary reporting by physicians, validated according to internationally defined criteria for drug-induced LQTS. RESULTS Of 861 patients coded with arrhythmias or sudden cardiac death, there were 40 confirmed surviving acquired cases of drug-induced LQTS. We estimated that the incidence of those who survive to reach hospital drug-induced LQTS is approximately 10.9 per million annually in France (95% confidence interval 7.8, 14.8). CONCLUSIONS Many cases of drug-induced LQTS may not survive before they reach hospital, as the reporting rate for drug-induced LQTS identified through the cardiology records and also reported to pharmacovigilance systems for the Midi-Pyrenees area is 3/40 (7.5%). Using the methods outlined it is possible to assemble cases to study genetic susceptibility to drug-induced LQTS and adapt these methods more widely. [source]