Home About us Contact | |||
Parental Species (parental + species)
Selected AbstractsEcological selection maintains cytonuclear incompatibilities in hybridizing sunflowersECOLOGY LETTERS, Issue 10 2008Julianno B. M. Sambatti Abstract Despite the recent renaissance in studies of ecological speciation, the connection between ecological selection and the evolution of reproductive isolation remains tenuous. We tested whether habitat adaptation of cytoplasmic genomes contributes to the maintenance of reproductive barriers in hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris. We transplanted genotypes of the parental species, reciprocal F1 hybrids and all eight possible backcross combinations of nuclear and cytoplasmic genomes into the contrasting xeric and mesic habitats of the parental species. Analysis of survivorship across two growing seasons revealed that the parental species' cytoplasms were strongly locally adapted and that cytonuclear interactions (CNIs) significantly affected the fitness and architecture of hybrid plants. A significant fraction of the CNIs have transgenerational effects, perhaps due to divergence in imprinting patterns. Our results suggest a common means by which ecological selection may contribute to speciation and have significant implications for the persistence of hybridizing species. [source] Host-related life history traits in interspecific hybrids of cactophilic DrosophilaENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2008E. M. Soto Abstract In the genus Drosophila (Diptera: Drosophilidae), interspecific hybridization is a rare phenomenon. However, recent evidence suggests a certain degree of introgression between the cactophilic siblings Drosophila buzzatii Patterson & Wheeler and Drosophila koepferae Fontdevila & Wasserman. In this article, we analyzed larval viability and developmental time of hybrids between males of D. buzzatii and females of D. koepferae, raised in media prepared with fermenting tissues of natural host plants that these species utilize in nature as breeding sites. In all cases, developmental time and larval viability in hybrids was not significantly different from parental lines and, depending on the cross, hybrids developed faster than both parental species or than the slowest species. When data of wing length were included in a discriminant function analysis, we observed that both species can be clearly differentiated, while hybrids fell in two categories, one intermediate between parental species and the other consisting of extreme phenotypes. Thus, our results point out that hybrid fitness, as measured by developmental time and viability, is not lower than in the parental species. [source] CASE STUDIES AND MATHEMATICAL MODELS OF ECOLOGICAL SPECIATION.EVOLUTION, Issue 10 2009We build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America. Our model attempts to account for empirical patterns and data on genetic incompatibility, mating preferences and selection by predation (both based on coloration patterns), habitat preference, and local adaptation for all three Heliconius species. Using this model, we study the likelihood of recombinational speciation and identify the effects of various ecological and genetic parameters on the dynamics, patterns, and consequences of hybrid ecological speciation. Overall, our model supports the possibility of hybrid origin of H. heurippa under certain conditions. The most plausible scenario would include hybridization between H. melpomene and H. cydno in an area geographically isolated from the rest of both parental species with subsequent long-lasting geographic isolation of the new hybrid species, followed by changes in the species ranges, the secondary contact, and disappearance of H. melpomene -type ecomorph in the hybrid species. However, much more work (both empirical and theoretical) is necessary to be able to make more definite conclusions on the importance of homoploid hybrid speciation in animals. [source] THE RATE OF GENOME STABILIZATION IN HOMOPLOID HYBRID SPECIESEVOLUTION, Issue 2 2008C. Alex Buerkle Homoploid hybrid speciation has been recognized for its potential rapid completion, an idea that has received support from experimental and modeling studies. Following initial hybridization, the genomes of parental species recombine and junctions between chromosomal blocks of different parental origin leave a record of recombination and the time period before homogenization of the derived genome. We use detailed genetic maps of three hybrid species of sunflowers and models to estimate the time required for the stabilization of the new hybrid genome. In contrast to previous estimates of 60 or fewer generations, we find that the genomes of three hybrid sunflower species were not stabilized for hundreds of generations. These results are reconciled with previous research by recognizing that the stabilization of a hybrid species' genome is not synonymous with hybrid speciation. Segregating factors that contribute to initial ecological or intrinsic genetic isolation may become stabilized quickly. The remainder of the genome likely becomes stabilized over a longer time interval, with recombination and drift dictating the contributions of the parental genomes. Our modeling of genome stabilization provides an upper bound for the time interval for reproductive isolation to be established and confirms the rapid nature of homoploid hybrid speciation. [source] A NOVEL PREFERENCE FOR AN INVASIVE PLANT AS A MECHANISM FOR ANIMAL HYBRID SPECIATIONEVOLUTION, Issue 2 2007Dietmar Schwarz Homoploid hybrid speciation,speciation via hybridization without a change in chromosome number,is rarely documented and poorly understood in animals. In particular, the mechanisms by which animal homoploid hybrid species become ecologically and reproductively isolated from their parents are hypothetical and remain largely untested by experiments. For the many host-specific parasites that mate on their host, choosing the right host is the most important ecological and reproductive barrier between these species. One example of a host-specific parasite is the Lonicera fly, a population of tephritid fruit flies that evolved within the last 250 years likely by hybridization between two native Rhagoletis species following a host shift to invasive honeysuckle. We studied the host preference of the Lonicera fly and its putative parent species in laboratory experiments. The Lonicera fly prefers its new host, introduced honeysuckle, over the hosts of both parental species, demonstrating the rapid acquisition of preference for a new host as a means of behavioral isolation from the parent species. The parent taxa discriminate against each other's native hosts, but both accept honeysuckle fruit, leaving the potential for asymmetric gene flow from the parent species. Importantly, this pattern allows us to formulate hypotheses about the initial formation of the Lonicera fly. As mating partners from the two parent taxa are more likely to meet on invasive honeysuckle than on their respective native hosts, independent acceptance of honeysuckle by both parents likely preceded hybridization. We propose that invasive honeysuckle served as a catalyst for the local breakdown of reproductive isolation between the native parent species, a novel consequence of the introduction of an exotic weed. We describe behavioral mechanisms that explain the initial hybridization and subsequent reproductive isolation of the hybrid Lonicera fly. These results provide experimental support for a combination of host shift and hybridization as a model for hybrid speciation in parasitic animals. [source] CROSSING RELATIONSHIPS AMONG ANCIENT AND EXPERIMENTAL SUNFLOWER HYBRID LINEAGESEVOLUTION, Issue 3 2000Loren H. Rieseberg Abstract., Reproductive barrier formation between newly derived hybrid taxa and their parental species represents a major evolutionary hurdle. Here, I examine the development of a sterility barrier during hybrid speciation by examining the fertility of progeny from all combinations of crosses involving three experimentally synthesized sunflower hybrid lineages, their natural hybrid counterpart, Helianthus anomalus, and their parents, H. annuus and H. petiolaris. Crosses between the parental species and H. anomalus generated almost completely sterile offspring (pollen viability < 5%; seed set < 1%). A fairly strong sterility barrier also has developed between three hybrid lineages and both parental species (pollen viability 11.1,41.6%; seed set 0.84,20.1%). In contrast, the three hybrid lineages are almost fully interfertile (pollen viabilities 83.1,88.6%; seed set 72.1,75.3%), as predicted by molecular mapping studies that indicate they have converged on a similar set of gene combinations and chromosomal rearrangements. A modest decline in compability is observed in crosses between the three hybrid lineages and H. anomalus (pollen viabilities 64.1,70.7%; seed set 37,43%), a result that agrees well with prior data demonstrating significant congruence between the genomes of the natural and experimental hybrid lineages. These observations not only indicate that reproductive isolation can arise as a by-product of fertility selection in hybrid populations, but also testify to the repeatability of this mode of speciation. [source] Effects of hybridization on the immunity of collared Ficedula albicollis and pied flycatchers F. hypoleuca, and their infection by haemosporidiansJOURNAL OF AVIAN BIOLOGY, Issue 4 2009Chris Wiley Because they are ubiquitous and typically reduce the fitness of hosts, parasites may play important roles in hybrid zone dynamics. Despite much work on herbivores and hybrid plants, the effect of parasites on the fitness of animal hybrids is poorly known. In an attempt to partly fill this gap, we examined the prevalence of avian haemosporidians Haemoproteus in a hybrid zone between collared Ficedula albicollis and pied flycatchers F. hypoleuca. 40 species-informative genetic markers allowed us to identify F1 hybrids, thus avoiding problems inherent in many studies that group hybrid genotypes. Furthermore, naturally occurring extra-pair paternity allowed us to test the immune responses of pure and hybrid nestlings to a novel antigen (phytohaemagglutinin) in a shared environment. In contrast to previous suggestions that animal hybrids may more often display resistance against parasites than plant hybrids, F1 hybrids exhibited prevalence of parasitism and immune responses that were intermediate between the two parental species. We also detected differences between the two parental species in their prevalence of infection, with the competitively dominant species (collared flycatcher) being less often infected by Haemoproteus. Overall, our results contribute to other recent data supporting the idea that the resistance of animals to parasites is variously and unpredictably affected by hybridization, and that there is a concordance in the general patterns observed in plants and animals. Haemosporidians in avian hybrids provide a useful system for investigating the interactions between hosts and parasites that characterize host contact zones. [source] A hybrid zone dominated by fertile F1s of two alpine shrub species, Phyllodoce caerulea and Phyllodoce aleutica, along a snowmelt gradientJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2008Y. KAMEYAMA Abstract In alpine ecosystems, the steep environmental gradients produced by the difference in snowmelt timing create a dynamic selective regime for alpine plants. As these gradients directly alter flowering phenology, they can affect pollen-mediated gene flow among populations of single and related species. In northern Japan, we found a hybrid zone dominated by fertile F1s of two alpine shrub species, Phyllodoce caerulea and P. aleutica, along a snowmelt gradient. Seed germination confirmed the fertility of F1 hybrid, making the rarity and absence of backcross and F2 plants puzzling. The long-term clonal perpetuation of F1 hybrids (at least a few thousand years ago) contributes the maintenance of this unique hybrid zone. The distribution patterns of chloroplast DNA haplotypes suggest that F1 formation might be caused by directional pollen flow between parental species along the snowmelt gradient. Based on these results, we discuss the ecological and evolutionary significance of this unique hybrid zone. [source] Evolutionary acceleration in the most endangered mammal of Canada: speciation and divergence in the Vancouver Island marmot (Rodentia, Sciuridae)JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2007A. CARDINI Abstract The Vancouver Island marmot is the most endangered mammal of Canada. Factors which have brought this population to the verge of extinction have not yet been fully elucidated, but the effects of deforestation and habitat fragmentation on survival rates, as well as those of variation in rainfall, temperature, snowpack depth and snowmelt strongly suggest that marmots on the island are struggling to keep pace with environmental changes. Genetic analyses, however, seem to indicate that the Vancouver Island marmot may merely represent a melanistic population of its parental species on the mainland. Were it not for its black pelage colour, it is unlikely that it would have attracted much attention as a conservation priority. Our study uses three-dimensional coordinates of cranial landmarks to further assess phenotypic differentiation of the Vancouver Island marmot. A pattern of strong interspecific divergence and low intraspecific variation was found which is consistent with aspects of drift-driven models of speciation. However, the magnitude of shape differences relative to the putatively neutral substitutions in synonymous sites of cytochrome b is too large for being compatible with a simple neutral model. A combination of bottlenecks and selective pressures due to natural and human-induced changes in the environment may offer a parsimonious explanation for the large phenotypic differentiation observed in the species. Our study exemplifies the usefulness of a multidisciplinary approach to the study of biological diversity for a better understanding of evolutionary models and to discover aspects of diversity that may be undetected by using only a few genetic markers to characterize population divergence and uniqueness. [source] Allochronic differentiation among Daphnia species, hybrids and backcrosses: the importance of sexual reproduction for population dynamics and genetic architectureJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2004T. Jankowski Abstract Seasonal dynamics of the abundance, sexual reproduction and genetic architecture in a Daphnia hyalina-galeata hybrid complex were studied in the large and deep Lake Constance. We found evidence for the occurrence of first and second order hybridization. Our study revealed strong differences between the parental species not only regarding their seasonal dynamics, genetic architecture and diversity, but also their sexual reproductive behaviour. The overwintering D. hyalina showed low genetic diversity, no genetic differentiation during the season, and reproduced sexually in autumn, whereas D. galeata reached higher levels of genetic diversity, reproduced sexually in early summer, and exhibited changes in genetic structure during the season, but was only present from spring to autumn. However, in both species sexual reproduction was a rare event, and daphnids, including hybrids, reproduced predominantly asexually. This allows long-term persistence of hybrids as well without continuing hybridization events. Within all variables studied, F1 and F2 hybrids showed an intermediate pattern, whereas proposed backcross hybrids were more similar to their respective parentals. These differences in phenotype as well as significant differences in pairwise Fst values between parentals suggest that gene flow seems to be relatively low in the Lake Constance hybrid system. We found evidence for unidirectional introgression by backcrossing from D. galeata to D. hyalina and found a decrease in at least one of the proposed introgressed alleles in the hyalina -backcross while the season progressed. Our findings suggest allochronic differentiation within this hybrid population and different microevolutionary trajectories of the parental species, which will be discussed in the light of the ongoing reoligotrophication process of Lake Constance. [source] PATERNAL LEAKAGE OF MITOCHONDRIAL DNA IN A FUCUS (PHAEOPHYCEAE) HYBRID ZONE,JOURNAL OF PHYCOLOGY, Issue 3 2009Galice Hoarau Eukaryotic mitochondria are mostly uniparentally (maternally) inherited, although mtDNA heteroplasmy has been reported in all major lineages. Heteroplasmy, the presence of more than one mitochondrial genome in an individual, can arise from recombination, point mutations, or by occasional transmission of the paternal mtDNA (=paternal leakage). Here, we report the first evidence of mtDNA paternal leakage in brown algae. In Denmark, where Fucus serratus L. and Fucus evanescens C. Agardh have hybridized for years, we found eight introgressed individuals that possessed the very distinct haplotypes of each parental species. The finding of heteroplasmy in individuals resulting from several generations of backcrosses suggests that paternal leakage occurred in earlier generations and has persisted through several meiotic bottlenecks. [source] Three-genome mosses: complex double allopolyploid origins for triploid gametophytes in SphagnumMOLECULAR ECOLOGY, Issue 7 2009ERIC F. KARLIN Abstract This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species (S. australe, S. falcatulum). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid (n = x) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum, the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum, with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda. In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe, possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum. Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum. [source] Major histocompatibility complex variability in the clonal Amazon molly, Poecilia formosa: is copy number less important than genotype?MOLECULAR ECOLOGY, Issue 6 2009K. P. LAMPERT Abstract The evolution of sex is still a major unsolved puzzle in biology. One of the most promising theoretical models to answer this question is the Red Queen hypothesis. The Red Queen hypothesis proposes a fast adaptation of pathogens to common genotypes and therefore a negative frequency-dependent selection against common genotypes. Clonal organisms should be especially endangered when co-occurring with closely related sexual species. In this context, major histocompatibility (MHC) genes have been discussed to be auspicious candidates that could provide the genetic basis on which selection for immune competence could act. In this study, we investigated MHC variability in a clonal teleost fish: the Amazon molly, Poecilia formosa. The Amazon molly is an ideal candidate to test the Red Queen hypothesis as it is a clonal species but co-occurs with a closely related sexual species and should therefore be especially susceptible to pathogen infection. We found that allele numbers did in general not differ between sexual and clonal ,species' but that genotypic variability is reduced in the clonally reproducing fish, especially in the polyploids. We conclude that in clonal organisms, genotype frequency might be more important for immune competence than MHC allele number. Amazon mollies and their co-occurring parental species clearly fulfil a prerequisite of the Red Queen hypothesis and should therefore provide an ideal system to experimentally test this basic principle probably underlying the evolution of sex. [source] Introgressive hybridization of human and rodent schistosome parasites in western KenyaMOLECULAR ECOLOGY, Issue 23 2008MICHELLE L. STEINAUER Abstract Hybridization and introgression can have important consequences for the evolution, ecology and epidemiology of pathogenic organisms. We examined the dynamics of hybridization between a trematode parasite of humans, Schistosoma mansoni, and its sister species, S. rodhaini, a rodent parasite, in a natural hybrid zone in western Kenya. Using microsatellite markers, rDNA and mtDNA, we showed that hybrids between the two species occur in nature, are fertile and produce viable offspring through backcrosses with S. mansoni. Averaged across collection sites, individuals of hybrid ancestry comprised 7.2% of all schistosomes collected, which is a large proportion given that one of the parental species, S. rodhaini, comprised only 9.1% of the specimens. No F1 individuals were collected and all hybrids represented backcrosses with S. mansoni that were of the first or successive generations. The direction of introgression appears highly asymmetric, causing unidirectional gene flow from the rodent parasite, S. rodhaini, to the human parasite, S. mansoni. Hybrid occurrence was seasonal and most hybrids were collected during the month of September over a 2-year period, a time when S. rodhaini was also abundant. We also examined the sex ratios and phenotypic differences between the hybrids and parental species, including the number of infective stages produced in the snail host and the time of day the infective stages emerge. No statistical differences were found in any of these characteristics, and most of the hybrids showed an emergence pattern similar to that of S. mansoni. One individual, however, showed a bimodal emergence pattern that was characteristic of both parental species. In conclusion, these species maintain their identity despite hybridization, although introgression may cause important alterations of the biology and epidemiology of schistosomiasis in this region. [source] Lower reproductive success in hybrid fur seal males indicates fitness costs to hybridizationMOLECULAR ECOLOGY, Issue 15 2007MELANIE L. LANCASTER Abstract Hybridization among organisms can potentially contribute to the processes of evolution, but this depends on the fitness of hybrids relative to parental species. A small, recently formed population of fur seals on subantarctic Macquarie Island contains a high proportion of hybrids (17,30%) derived from combinations of three parental species: Antarctic, subantarctic and New Zealand fur seals. Mitochondrial control-region data (restriction fragment length polymorphisms) and nine microsatellites were used to determine the species composition of breeding adults, and hybrid male fitness was measured by comparing reproductive success (number of genetically inferred paternities) of hybrid and pure-species territory males over 6 years. No correlations were found between male reproductive success and three genetic measures of outbreeding, but this may be due to a relatively small number of dominant males analysed. Territory males fathered 63% of pups, but hybrid males had lower reproductive success than pure-species males despite having the same ability to hold territories. A greater proportion of females in hybrid male territories conceived extra-territorially than those in territories of pure-species males, and most (70 of 82) mated with conspecifics. This suggests the presence of reproductive isolating mechanisms that promote positive assortative mating and reduce the production of hybrid offspring. Although we found no evidence for male sterility in the population, mechanisms that reduce lifetime reproductive success may act to decrease the frequency of hybrids. Our study has identified a disadvantage of hybridization , reduced reproductive success of hybrid sons , that may be contributing to the persistence of pure lineages at Macquarie Island and the temporal decline in hybridization observed there. [source] Natural hybridization between Senecio jacobaea and Senecio aquaticus: molecular and chemical evidenceMOLECULAR ECOLOGY, Issue 8 2004HEATHER KIRK Abstract Hybridization is known to be involved in a number of evolutionary processes, including species formation, and the generation of novel defence characteristics in plants. The genus Senecio of the Asteraceae family is highly speciose and has historically demonstrated significant levels of interspecific hybridization. The evolution of novel chemical defence characteristics may have contributed to the success of Senecio hybrids. Chemical defence against pathogens and herbivores has been studied extensively in the model species Senecio jacobaea, which is thought to hybridize in nature with Senecio aquaticus. Here, we use amplified fragment length polymorphisms (AFLPs) and pyrrolizidine alkaloid (PA) composition to confirm that natural hybridization occurs between S. jacobaea and the closely related species S. aquaticus. AFLPs are also used to estimate the ancestry of hybrids. We also demonstrate that even highly back-crossed hybrids can possess a unique mixture of defence chemicals specific to each of the parental species. This hybrid system may therefore prove to be useful in further studies of the role of hybridization in the evolution of plant defence and resistance. [source] Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: Implications for the origin of Helianthus paradoxus, a diploid hybrid speciesMOLECULAR ECOLOGY, Issue 5 2003C. Lexer Abstract For a new diploid or homoploid hybrid species to become established, it must diverge ecologically from parental genotypes. Otherwise the hybrid neospecies will be overcome by gene flow or competition. We initiated a series of experiments designed to understand how the homoploid hybrid species, Helianthus paradoxus, was able to colonize salt marsh habitats, when both of its parental species (H. annuus×H. petiolaris) are salt sensitive. Here, we report on the results of a quantitative trait locus (QTL) analysis of mineral ion uptake traits and survivorship in 172 BC2 hybrids between H. annuus and H. petiolaris that were planted in H. paradoxus salt marsh habitat in New Mexico. A total of 14 QTLs were detected for mineral ion uptake traits and three for survivorship. Several mineral ion QTLs mapped to the same position as the survivorship QTLs, confirming previous studies, which indicated that salt tolerance in Helianthus is achieved through increased Ca uptake, coupled with greater exclusion of Na and related mineral ions. Of greater general significance was the observation that QTLs with effects in opposing directions were found for survivorship and for all mineral ion uptake traits with more than one detected QTL. This genetic architecture provides an ideal substrate for rapid ecological divergence in hybrid neospecies and offers a simple explanation for the colonization of salt marsh habitats by H. paradoxus. Finally, selection coefficients of +0.126, ,0.084 and ,0.094 for the three survivorship QTLs, respectively, are sufficiently large to account for establishment of new, homoploid hybrid species. [source] Likely multiple origins of a diploid hybrid sunflower speciesMOLECULAR ECOLOGY, Issue 9 2002A. E. Schwarzbach Abstract The recurrent origin of diploid hybrid species is theoretically improbable because of the enormous diversity of hybrid genotypes generated by recombination. Recent greenhouse experiments, however, indicate that the genomic composition of hybrid lineages is shaped in part by deterministic forces, and that recurrent diploid hybrid speciation may be more feasible than previously believed. Here we use patterns of variation from chloroplast DNA (cpDNA), nuclear microsatellite loci, cross-viability and chromosome structure to assess whether a well-characterized diploid hybrid sunflower species, Helianthus anomalus, was derived on multiple occasions from its parental species, H. annuus and H. petiolaris. Chloroplast DNA and crossability data were most consistent with a scenario in which H. anomalus arose three times: three different H. anomalus fertility groups were discovered, each with a unique cpDNA haplotype. In contrast, there was no clear signature of multiple, independent origins from the microsatellite loci. Given the age of H. anomalus (> 100 000 years bp), it may be that microsatellite evidence for recurrent speciation has been eroded by mutation and gene flow through pollen. [source] Intimately linked or hardly speaking?MOLECULAR ECOLOGY, Issue 3 2001The relationship between genotype, environmental gradients in a Louisiana Iris hybrid population Abstract Several models of hybrid zone evolution predict the same spatial patterns of genotypic distribution whether or not structuring is due to environment-dependent or -independent selection. In this study, we tested for evidence of environment-dependent selection in an Iris fulva×Iris brevicaulis hybrid population by examining the distribution of genotypes in relation to environmental gradients. We selected 201 Louisiana Iris plants from within a known hybrid population (80 m × 80 m) and placed them in four different genotypic classes (I. fulva, I. fulva -like hybrid, I. brevicaulis -like hybrid and I. brevicaulis) based on seven species-specific random amplified polymorphic DNA (RAPD) markers and two chloroplast DNA haplotypes. Environmental variables were then measured. These variables included percentage cover by tree canopy, elevation from the high water mark, soil pH and percentage soil organic matter. Each variable was sampled for all 201 plants. Canonical discriminant analysis (CDA) was used to infer the environmental factors most strongly associated with the different genotypic groups. Slight differences in elevation (,0.5 m to +0.4 m) were important for distinguishing habitat distributions described by CDA, even though there were no statistical differences between mean elevations alone. I. brevicaulis occurred in a broad range of habitats, while I. fulva had a narrower distribution. Of all the possible combinations, I. fulva -like hybrids and I. brevicaulis -like hybrids occurred in the most distinct habitat types relative to one another. Each hybrid class was not significantly different from its closest parent with regard to habitat occupied, but was statistically unique from its more distant parental species. Within the hybrid genotypes, most, but not all, RAPD loci were individually correlated with environmental variables. This study suggests that, at a very fine spatial scale, environment-dependent selection contributed to the genetic structuring of this hybrid zone. [source] Reciprocal hybrid formation of Spartina in San Francisco BayMOLECULAR ECOLOGY, Issue 6 2000C. K. Anttila Abstract Diversity in the tRNALEU1 intron of the chloroplast genome of Spartina was used to study hybridization of native California cordgrass, Spartina foliosa, with S. alterniflora, introduced to San Francisco Bay , 25 years ago. We sequenced 544 bases of the tRNALEU1 intron and found three polymorphic sites, a pyrimidine transition at site 126 and transversions at sites 382 and 430. Spartina from outside of San Francisco Bay, where hybridization between these species is impossible, gave cpDNA genotypes of the parental species. S. foliosa had a single chloroplast haplotype, CCT, and this was unique to California cordgrass. S. alterniflora from the native range along the Atlantic coast of North America had three chloroplast haplotypes, CAT, TAA, and TAT. Hybrids were discriminated by random amplified polymorphic DNA (RAPD) phenotypes developed in a previous study. We found one hybrid that contained a cpDNA haplotype unknown in either parental species (TCT). The most significant finding was that hybridization proceeds in both directions, assuming maternal inheritance of cpDNA; 26 of the 36 hybrid Spartina plants from San Francisco Bay contained the S. foliosa haplotype, nine contained haplotypes of the invading S. alterniflora, and one had the cpDNA of unknown origin. Furthermore, cpDNA of both parental species was distributed throughout the broad range of RAPD phenotypes, suggesting ongoing contributions to the hybrid swarm from both. The preponderance of S. foliosa cpDNA has entered the hybrid swarm indirectly, we propose, from F1s that backcross to S. foliosa. Flowering of the native precedes by several weeks that of the invading species, with little overlap between the two. Thus, F1 hybrids would be rare and sired by the last S. foliosa pollen upon the first S. alterniflora stigmas. The native species produces little pollen and this has low viability. An intermediate flowering time of hybrids as well as pollen that is more vigourous and abundant than that of the native species would predispose F1s to high fitness in a vast sea of native ovules. Thus, spread of hybrids to other S. foliosa marshes could be an even greater threat to the native species than introductions of alien S. alterniflora. [source] Cross-species amplification of microsatellite loci in Aquilegia and Semiaquilegia (Ranunculaceae)MOLECULAR ECOLOGY RESOURCES, Issue 2 2005JI Y. YANG Abstract We developed 16 microsatellite loci from an F2 hybrid between Aquilegia formosa and Aquilegia pubescens. In samples of 28 individuals, we found an average of 14 alleles per locus from each parental species. We tested these loci for cross-amplification in 10 additional species of Aquilegia and found that all 16 loci amplified in other North American species and 12 consistently amplified in European or Asian species. Nine loci amplified in the sister species to Aquilegia, Semiaquilegia adoxoides. The success of cross-species amplification suggests that these microsatellites should prove useful for studies in a broad range of Aquilegia species. [source] Enhanced drought-tolerance in the homoploid hybrid species Pinus densata: implication for its habitat divergence from two progenitorsNEW PHYTOLOGIST, Issue 1 2010Fei Ma Summary ,,The homoploid hybrid species Pinus densata is restricted to alpine habitats that exceed the altitude range of its two parental species, Pinus tabulaeformis and Pinus yunnanensis. Alpine habitats usually generate cold-induced water stress in plants. To understand the ecological differentiation between these three species, we examined their physiological responses to drought stress. ,,Potted seedlings of three species were subjected to low, mild, moderate and severe water stress in an automatic-controlled glasshouse. Fifteen indicators of fitness were measured for each species in each treatment, and most of these decreased as drought increased. ,,Pinus densata exhibited higher fitness than both parental species in terms of total dry mass production (TDM) and long-term water use efficiency (WUEL) across all treatments; several other ecophysiological traits were also extreme but not across every treatment, and not always in the highest stress treatment. ,,These results indicate that extreme characters that have become well fixed in P. densata, confer a faster seedling growth rate and more efficient water use, which in turn should confer increased drought tolerance. These traits of P. densata likely promoted its ecological separation from its parental species and facilitated its successful colonization and establishment in high-altitude habitats. [source] Decreased Levels of (6,4) Photoproduct Excision Repair in Hybrid Fish of the Genus Xiphophorus,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2004David L. Mitchell ABSTRACT Selected hybridization in the fish genus Xiphophorus has been used for many years to study the genetics of malignant melanoma. Because DNA damage caused by ultraviolet radiation is implicated in the etiology of sunlight-induced melanoma, the heritability of mechanisms that mitigate DNA damage is a matter of some interest. We examined nucleotide excision repair of the two major types of DNA-damage induced by sunlight; the cyclobutane pyrimidine dimer (CPD) and the pyrimidine (6,4) pyrimidone dimer [(6,4)PD]. In most cases, removal of the (6,4) PD was more rapid than the CPD, and in many cases, the F1 hybrid showed reduced repair efficiency compared with the parental species. These data demonstrate reduced function in multienzyme hybrid systems and provide molecular support for potential reduced fitness in hybrid fish under conditions of environmental stress. [source] Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potentialPLANT BREEDING, Issue 1 2005Article first published online: 28 JUN 200, M. H. Rahman Self-incompatibility (SI) in Brassica has been considered as a pollination control mechanism for commercial hybrid seed production, and so far has been extensively used in vegetable types of Brassicas. Oilseed rape Brassica napus (AACC) is naturally self-compatible in contrast to its parental species that are generally self-incompatible. Introduction of S-alleles from its parental species into oilseed rape is therefore needed to use this pollination control mechanism in commercial hybrid seed production. Self-incompatible lines of B. napus, carrying SI alleles in both A and C genomes, were resynthesized from self-incompatible B. oleracea var. italica (CC) cv.,Green Duke' and self-incompatible B. rapa ssp. oleifera (AA) cv. ,Horizon', ,Colt' and ,AC Parkland'. All resynthesized B. napus lines exhibited strong dominant SI phenotype. Reciprocal cross-compatibility was found between some of these self-incompatible lines. The inheritance of S-alleles in these resynthesized B. napus was digenic confirming that each of the parental genomes contributed one S-locus in the resynthesized B. napus lines. However, the presence of two S-loci in the two genomes was found not to be essential for imparting a strong SI phenotype. Possible use of these dominant self-incompatible resynthesized B. napus lines in hybrid breeding is discussed. [source] Production of yellow-seeded Brassica napus through interspecific crossesPLANT BREEDING, Issue 6 2001M. H. Rahman Abstract Yellow-seeded Brassica napus was developed from interspecific crosses between yellow-seeded Brassica rapa var.,yellow sarson' (AA), black-seeded Brassica alboglabra (CC), yellow-seeded Brassica carinata (Bbcc) and black-seeded B. napus (AACC). Three different interspecific crossing approaches were undertaken. Approaches 1 and 2 were designed directly to develop yellow-seeded B. napus while approach 3 was designed to produce a yellow-seeded CC genome species. Approaches 1 and 2 differed in the steps taken after trigenomic interspecific hybrids (ABC) were generated from B. carinata×B. rapa crosses. The aim of approach 1 was to transfer the yellow seed colour genes from the A to the C genome as an intermediate step in developing yellow-seeded B. napus. For this purpose, the ABC hybrids were crossed with black-seeded B. napus and the three-way interspecific hybrids were self-pollinated for a number of generations. The F7 generation resulted in the yellowish-brown-seeded B. napus line, No. 06. Crossing this line with the B. napus line No. 01, resynthesized from a black-seeded B. alboglabra x B. rapa var.,yellow sarson' cross (containing the yellow seed colour genes in its AA genome), yielded yellow-seeded B. napus. This result indicated that the yellow seed colour genes were transferred from the A to the C genome in the yellowish-brown seed colour line No. 06. In approach 2, trigenomic diploids (AABBCC) were generated from the above-mentioned trigenomic haploids (ABC). The seed colour of the trigenomic diploid was brown, in contrast to the yellow seed colour of the parental species. Trigenomic diploids were crossed with the resynthesized B. napus line No. 01 to eliminate the B genome chromosomes, and to develop yellow-seeded B. napus with the AA genome of ,yellow sarson' and the CC genome of B. carinata with yellow seed colour genes. This interspecific cross failed to generate any yellow-seeded B. napus. Approach 3 was to develop yellow-seeded CC genome species from B. alboglabra×B. carinata crosses. It was possible to obtain a yellowish-brown seeded B. alboglabra, but crossing this B. alboglabra with B. rapa var.,yellow sarson' failed to produce yellow seed in the resynthesized B. napus. The results of approaches 2 and 3 demonstrated that yellow-seeded B. napus cannot be developed by combining the yellow seed colour genes of the CC genome of yellow-seeded B. carinata and the AA genome of ,yellow sarson'. [source] Alloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcripts of Arabidopsis orfs in cytoplasmic male-sterile Brassica napusTHE PLANT JOURNAL, Issue 4 2005Matti Leino Summary Mitochondrial transcription was investigated in a cytoplasmic male-sterile (CMS) Brassica napus line with rearranged mitochondrial (mt) DNA mostly inherited from Arabidopsis thaliana. The transcript patterns were compared with the corresponding male-fertile progenitors, B. napus and A. thaliana, and a fertility-restored line. Transcriptional activities, gene stoichiometry and transcript steady-state levels were analysed for all protein and rRNA coding genes and for several orfs present in the A. thaliana mitochondrial genome. The transcriptional activities were highly variable when comparing the parental species, while the CMS and restored lines displayed similar activities. For several ribosomal protein genes transcriptional activity was reduced while it was increased for orf139 in comparison with the parental species. The differences in transcriptional activity observed could be related to differences in relative promoter strength, as gene stoichiometry between lines was very limited. Transcript steady-state levels were more homogenous than the transcriptional activities demonstrating RNA turnover as a compensating mechanism. In the CMS line higher transcript abundance and novel transcript patterns in comparison with the parental lines were found for several genes. Of those, the transcripts for orf139, orf240a and orf294 were less abundant in the fertility-restored line. These putative CMS-associated transcripts were mapped by cRT-PCR. In conclusion we show that (mt) DNA from A. thaliana was non-correctly transcribed and processed/degraded in the B. napus nuclear background. Furthermore, the introgressed nuclear A. thaliana DNA in the fertility-restored line contributes to a more rapid degradation of transcripts accumulated from A. thaliana derived orfs in the CMS line. [source] Genetic characterization and gonad development of artificially produced interspecific hybrids of the abalones, Haliotis discus discus Reeve, Haliotis gigantea Gmelin and Haliotis madaka HabeAQUACULTURE RESEARCH, Issue 5 2008Faruq Ahmed Abstract Hybridization among abalone species has been suggested as a possible means to increase their growth rates for aquaculture. As a first step to test the usefulness of the hybrids of Japanese abalone species (Haliotis discus discus, Haliotis gigantea and Haliotis madaka) for aquaculture, we characterized the genetic background and gonad development of hybrids that were produced by artificial insemination. The hybrid status of the resulting offspring was confirmed by assaying 14 allozymes and by RFLP analysis of the 16s rRNA and cytochrome oxidase I (COI) regions of mtDNA using 13 restriction enzymes. Histological examination of the gonads of the hybrids was conducted in comparison with those of the parental species. Cross-breeding among the three species was conducted successfully in all combinations although with lower fertilization rates (means of 1.3,60.8%) than the parental species (34.3,90%). Crosses between H. discus discus and H. madaka had higher fertilization rates (22.4,60.8%) than those involving H. gigantea (1.3,19.9%). The hybrids were ascertained by the presence of both parental genotypes at the LDH-A, ME-A, MDH-A and GPI loci. The maternal origin of the hybrid mtDNA was confirmed by digestion with DdeI, TaqI, HpaII of the COI region. No polymorphism was observed in the 16S rRNA region. The hybrids had gonadal development and maturity stages similar to the parental species up to fully mature oocytes and sperm. They spawned upon stimulation and produced viable offspring with high fertilization rates and successful development to the juvenile stage in back- and homologous hybrid crosses. [source] Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2008SÒNIA GARCIA The genome size of 51 populations of 20 species of the North American endemic sagebrushes (subgenus Tridentatae), related species, and some hybrid taxa were assessed by flow cytometry, and were analysed in a phylogenetic framework. Results were similar for most Tridentatae species, with the exception of three taxonomically conflictive species: Artemisia bigelovii Gray, Artemisia pygmaea Gray, and Artemisia rigida Gray. Genome size homogeneity (together with the high morphological, chemical, and karyological affinities, as well as low DNA sequence divergence) could support a recent diversification process in this geographically restricted group, thought to be built upon a reticulate evolutionary framework. The Tridentatae and the other North American endemic Artemisia show a significantly higher genome size compared with the other subgenera. Our comparative analyses including genome size results, together with different kinds of ecological and morphological traits, suggest an evolutionary change in lifestyle strategy linked to genome expansion, in which junk or selfish DNA accumulation might be involved. Conversely, weed or invasive behaviour in Artemisia is coupled with lower genome sizes. Data for both homoploid and polyploid hybrids were also assessed. Genome sizes are close to the expected mean of parental species for homoploid hybrids, but are lower than expected in the allopolyploids, a phenomenon previously documented to be related with polyploidy. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 631,649. [source] Genetic Evidence for Natural Hybridization between Species of Dioecious Ficus on Island Populations1BIOTROPICA, Issue 3 2003Tracey L. Parrish ABSTRACT Natural hybrids between Ficus septica and two closely related dioecious species, F. fistulosa and F. hispida, were confirmed using amplified fragment length polymorphisms (AFLP) and chloroplast DNA markers. Ficus species have a highly species-specific pollination mutualism with agaonid wasps. Therefore, the identification of cases in which breakdown in this sophisticated system occurs and the circumstances under which it happens is of interest. Various studies have confirmed that Ficus species are able to hybridize and that pollinator-specificity breakdown can occur under certain conditions. This study is the first example in which hybrid identity and the presence of hybrids in the natural distribution of parental species for Ficus have been confirmed with molecular markers. Hybrid individuals were identified on three island locations in the Sunda Strait region of Indonesia. These findings support Janzen's (1979) hypothesis that breakdown in pollinator specificity is more likely to occur on islands. We hypothesized that hybrid events could occur when the population size of pollinator wasps was small or had been small in one of the parental species. Later generation hybrids were identified, indicating that backcrossing and introgression did occur to some extent and that therefore, hybrids could be fertile. The small number of hybrids found indicated that there was little effect of hybridization on parental species integrity over the study area. Although hybrid individuals were not common, their presence at multiple sites indicated that the hybridization events reported here were not isolated incidences. Chloroplast DNA haplotypes of hybrids were not derived solely from one species, suggesting that the seed donor was not of the same parental species in all hybridization events. [source] Reproductive strategies in some arctic Saxifraga (Saxifragaceae), with emphasis on the narrow endemic S. svalbardensis and its parental speciesBOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2001CHRISTIAN BROCHMANN Arctic saxifrages show conspicuous reproductive and chromosomal variation. We examined sexual and asexual traits in 43 phytotron-cultivated Svalbard populations of nine species, including the endemic, supposedly entirely asexual and aneupolyploid S. svalbardensis and its parental species, S. cernua and S. rivularis. All species were self-compatible hermaphrodites with low pollen/ovule ratios, including the strongly protandrous S. cernua, which previously has been reported as self-incompatible with an androdioecious mating system. Spontaneous selfing resulted in considerable seed set in several species and a few seeds in S. svalbardensis and S. cernua; hand-selfing and cross-pollination often increased seed set in the two latter species. Self-fertilized seeds of S. svalbardensis and S. cernua were viable and developed into normal, vigorous plants. Saxifraga rivularis and its close relative S. hyperborea were strongly autogamous. The bulbil-reproducing S. svalbardensis and S. cernua showed extreme variation in fertility, probably because of frequent aneuploidy. Many plants of S. cernua were fully fertile, suggesting that although natural seed set rarely has been observed, sexual reproduction is frequent enough to maintain its previously reported high levels of clonal diversity. Some plants of S. svalbardensis were also fairly fertile. This species may have considerable evolutionary potential; sexual events can lead to increasingly fertile genets with euploid chromosome numbers. [source] |