Parent Complex (parent + complex)

Distribution by Scientific Domains


Selected Abstracts


The N -Acylated Derivatives of Parent Complex [{(,-SCH2)2NH}Fe2(CO)6] as Active Site Models of Fe-Only Hydrogenases: Synthesis, Characterization, and Related Properties

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2008
Li-Cheng Song
Abstract A series of N -acylated diiron azadithiolate complexes as H-cluster models was synthesized and structurally characterized. Treatment of parent complex [{(,-SCH2)2NH}Fe2(CO)6] (A) with 2-chloroacetic acid in the presence of dicyclohexylcarbodiimide or with 2-chloroacetyl chloride in the presence of Et3N gave N -chloroacetyl complex [{(,-SCH2)2NC(O)CH2Cl}Fe2(CO)6] (1). Further treatment of 1 with MeC(O)SK afforded N -acetylthioacetyl complex [{(,-SCH2)2NC(O)CH2SC(O)Me}Fe2(CO)6] (2). N -Ethoxylcarbonylacetyl complex [{(,-SCH2)2NC(O)CH2CO2Et}Fe2(CO)6] (3) and N-heterocyclic complexes [{(,-SCH2)2NC(O)C4H3Y-2}Fe2(CO)6] (4, Y = O; 5, Y = S) were produced by reactions of A with EtO2CCH2C(O)Cl, 2-furancarbonyl chloride, and 2-thiophenecarbonyl chloride in the presence of pyridine or Et3N. Similarly, N -malonyl complex [{Fe2(CO)6(,-SCH2)2NC(O)}2CH2] (6) and N -carbonylbenzaldehyde complex [{(,-SCH2)2NC(O)C6H4CHO- p}Fe2(CO)6] (7) could be obtained by reaction of A with malonyl dichloride in the presence of pyridine and with p -CHOC6H4C(O)Cl in the presence of Et3N. More interestingly, further reaction of 7 with PhCHO and pyrrole in a 1:3:4 molar ratio in the presence of BF3·OEt2 followed by p -chloranil yielded the first light-driven type of model complex containing an N -carbonylphenylporphyrin moiety [{(,-SCH2)2NC(O)(TPP)}Fe2(CO)6] (8, TPP = tetraphenylporphyrin group). Whereas the molecular structures of 2, 5, and 7 were established by X-ray crystallography, the electrochemical properties of 2,5 as well as the proton reduction to hydrogen gas catalyzed by 2 and 3 were studied by CV techniques.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Ruthenium Catalysts for Controlled Mono- and Bis-Allylation of Active Methylene Compounds with Aliphatic Allylic Substrates

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 16 2009
Hui-Jun Zhang
Abstract The allylation of 1,3-dicarbonyl compounds and malononitrile with aliphatic allylic substrates is achieved under mild conditions in the presence of new ruthenium catalysts. The ruthenium complex [Ru(C5Me5)(2-quinolinecarboxylato)(CH2CHCH- n -Pr)],[BF4] as a precatalyst, allows the synthesis of mono-allylated branched derivatives. On the other hand, the parent complex [Ru(C5Me5)(MeCN)3],[PF6] as a precatalyst, straightforwardly favours the bis-allylation of the procarbonucleophiles leading to bis-allylated bis-linear products. The involvement of the two precatalysts provides a sequential synthesis of unsymmetrical mixed linear-branched bis-allylated derivatives. [source]


Effect of Ring Methylation on the Photophysical, Photochemical and Photobiological Properties of cis -Dichlorobis(1,10-Phenanthroline)Rhodium(III)Chloride,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2006
Devanesan Loganathan
ABSTRACT Methylated analogues of cis -dichlorobis(1,10-phenanthroline)-rhodium(III)chloride (BISPHEN) have been prepared in order to increase the hydrophobicity of the parent compound, and thus create octahedral rhodium (III) complexes suitable for use as anticancer and antiviral agents that can be photo-activated. The parent complex has been shown in earlier work to be unable to cross through cell membranes. Octamethylation, as in the case of cis -dichlorobis(3,4,7,8-tetramethyl-1,10-phenanthroline)rhodium(III)chloride (OCTBP), provides enough hydrophobicity to be taken up by KB tumor cells. It also provides a higher level of ground-state association with double-stranded DNA and increases the quantum efficiency of photoaquation by greater than 10-fold, relative to BISPHEN. OCTBP forms covalent bonds to deoxyguanosine when irradiated with the nucleoside, as has been seen with the parent complex. Irradiation of OCTBP in the presence of the KB or M109 tumor cell lines using narrow-band UVB (,= 311 nm) irradiation initiates a considerable amount of phototoxicity. There is evidence that OCTBP acts as a prodrug (i.e. after passing through the cell membrane the metal complex is photolyzed to cis -chloro aquo OCTBP, which may be the active phototoxic agent). OCTBP and the tetramethyl analogue cis -dichlorobis(4,7-dimethyl-1,10-phenanthroline)rhodium(III)chloride (47TMBP) also show photoaquation upon excitation with visible light (, > 500 nm), and indeed, some phototoxicity of KB cells is observed at these wavelengths as well. This is attributed to direct population of photoactive triplet-excited states. These results, together with our earlier studies of cis -dichloro[dipyrido(3,2-a: 2,,3,-c)phenazine (1,10-phenanthroline)rhodium(III)chloride (DPPZPHEN) demonstrate that such octahedral rhodium complexes are viable "photo-cisplatin" reagents. [source]


The relationship between the electrospray ionization behaviour and biological activity of some phosphino Cu(I) complexes

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2010
Francesco Tisato
Electrospray ionization mass spectrometry was usefully employed for the characterization of three phosphino copper(I) complexes of medicinal interest. This technique revealed that the original [CuL4]+ pro-drugs (L,=,hydrophilic tertiary phosphine) underwent dissociation with production of coordinative unsaturated [CuL3]+ and [CuL2]+ species, which represented key intermediates for the activation of potential biological properties. The more favoured was the displacement of the ligands from the [CuL4]+ parent complex, the more favoured was in turn the possibility for the metal ion to directly interact with biological substrates, including pharmacological targets related to cancer proliferation. An inverse correlation between the stability and the cytotoxic activity of the three copper(I) complexes investigated has been clearly established. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution

CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2010
Patricia González-Cardoso
Abstract The first artificially made set of electron acceptors is presented that are derived from a unique platform Cs[3,3,-Co(C2B9H11)2], for which the redox potential of each differs from its predecessor by a fixed amount. The sequence of electron acceptors is made by substituting one, two, or more hydrogen atoms by chlorine atoms, yielding Cs[3,3,-Co(C2B9H11,yCly)(C2B9H11,zClz)]. The higher the number of chlorine substituents, the more prone the platform is to be reduced. The effect is completely additive, so if a single substitution implies a reduction of 0.1,V of the redox potential of the parent complex, then ten substitutions imply a reduction of 1,V. [source]


Reactivity of Molecular Dioxygen towards a Series of Isostructural Dichloroiron(III) Complexes with Tripodal Tetraamine Ligands: General Access to ,-Oxodiiron(III) Complexes and Effect of ,-Fluorination on the Reaction Kinetics

CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2008
Nasser
Abstract We have synthesized the mono, di-, and tri-,-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F2TPA and F3TPA, respectively. Fluorination at the ,-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45,70,mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F2TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl2. All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable ,-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three ,-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the ,4N coordination mode. With FTPA, the compound is a neutral ,-oxodiiron(III) complex with a ,3N coordination mode of the ligand. Oxygenation of the F2TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all ,-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of ,-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90,% conversion over 40,h, the monofluorinated ligand provides a complex that has fully reacted after 30,h, whereas the reaction time for the complex with the difluorinated ligand is only 10,h. Analysis of the spectroscopic data reveals that formation of the ,-oxo complexes proceeds in two distinct reversible kinetic steps with k1,10,k2. For TPAFeCl2 and FTPAFeCl2 only small variations in the k1 and k2 values are observed. By contrast, F2TPAFeCl2 exhibits k1 and k2 values that are ten times higher. These differences in kinetics are interpreted in the light of structural and electronic effects, especially the Lewis acidity at the metal center. Our results suggest coordination of dioxygen as an initial step in the process leading to formation of ,-oxodiiron(III) compounds, by contrast with an unlikely outer-sphere reduction of dioxygen, which generally occurs at negative potentials. [source]


Spectroelectrochemical and Computational Studies on the Mechanism of Hypoxia Selectivity of Copper Radiopharmaceuticals

CHEMISTRY - A EUROPEAN JOURNAL, Issue 19 2008
Jason
Abstract Detailed chemical, spectroelectrochemical and computational studies have been used to investigate the mechanism of hypoxia selectivity of a range of copper radiopharmaceuticals. A revised mechanism involving a delicate balance between cellular uptake, intracellular reduction, reoxidation, protonation and ligand dissociation is proposed. This mechanism accounts for observed differences in the reported cellular uptake and washout of related copper bis(thiosemicarbazonato) complexes. Three copper and zinc complexes have been characterised by X-ray crystallography and the redox chemistry of a series of copper complexes has been investigated by using electronic absorption and EPR spectroelectrochemistry. Time-dependent density functional theory (TD-DFT) calculations have also been used to probe the electronic structures of intermediate species and assign the electronic absorption spectra. DFT calculations also show that one-electron oxidation is ligand-based, leading to the formation of cationic triplet species. In the absence of protons, metal-centred one-electron reduction gives the reduced anionic copper(I) species, [CuIATSM],, and for the first time it is shown that molecular oxygen can reoxidise this anion to give the neutral, lipophilic parent complexes, which can wash out of cells. The electrochemistry is pH dependent and in the presence of stronger acids both chemical and electrochemical reduction leads to quantitative and rapid dissociation of copper(I) ions from the mono- or diprotonated complexes, [CuIATSMH] and [CuIATSMH2]+. In addition, a range of protonated intermediate species have been identified at lower acid concentrations. The one-electron reduction potential, rate of reoxidation of the copper(I) anionic species and ease of protonation are dependent on the structure of the ligand, which also governs their observed behaviour in vivo. [source]