Parasitic Capacitance (parasitic + capacitance)

Distribution by Scientific Domains


Selected Abstracts


High-frequency Impedance and Sensitivity of Micro-fluxgate Sensors Fabricated with Cobalt Base Amorphous Films

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 4 2008
Kwang-Ho Shin Non-member
Abstract Micro-fluxgate sensors 2 mm long, 1.5 mm wide were fabricated with CoZrNb amorphous films. Their high-frequency input/output impedance was measured and evaluated to investigate whether the sensor output and/or sensitivity could be estimated by the complex impedance, especially the reactance. The output reactance changed from 11.1 to 6.1 ohm at 8 MHz by applying the external magnetic field of 10.5 Oe, whereas the input impedance changed from 12.3 to 10.1 ohm. The parasitic capacitance was driven from the measured reactance and resonance frequency. The inductance and inductive reactance could be evaluated with the parasitic capacitance and measured reactance. The tendency of output voltage dependent on frequency is similar to that of inductive reactance. The sensitivity of the fabricated sensor was 17.6 mV/VOe at 8 MHz. Copyright © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Effects of parasitic resonance on a vertical transition in multilayer printed circuit boards

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2010
Sung Tae Choi
Abstract This article reports on parasitic resonance effects of a ground plane with/without a ground opening underneath a signal via with an open stub on the performance of a vertical transition in a multilayer printed circuit board. An equivalent circuit model that accounts for the parasitic resonance due to the open stub inductance and the parasitic capacitance is developed and verified with the measured and simulated results. The fabricated transition exhibits a return loss better than about 10 dB and an insertion loss less than 1.9 dB up to 21.5 GHz. A good agreement is observed between measured and simulated results. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 2098,2100, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25404 [source]


A CMOS opto-electronic single chip using the hybrid scheme for optical receivers

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2008
Jian-Ming Huang
Abstract An opto-electronic integrated circuit based on the hybrid scheme for an optical receiver front-end is presented in this article. The proposed integrated circuit adopts the CMOS technology as the vehicle to integrate the InP-based waveguide photodetector into the transimpedance amplifier (TIA) circuit. A regulated cascade structure is used to reduce the input impedance of the TIA. Hence, the proposed integrated circuit can achieve a very high bandwidth provided that the parasitic capacitance of the photodetector is up to 1 pF. The 3-dB bandwidth and the transimpedance gain of the proposed circuit are 1 GHz and 64.5 dB,, respectively. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 2430,2434, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23693 [source]


Modelling the dynamics of log-domain circuits

INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 1 2007
Alon Ascoli
Abstract Log-domain filters are an intriguing form of externally linear, internally nonlinear current-mode circuits, in which a compression stage is first used to convert the input currents to the logarithmic domain, then analogue processing is carried out on the resulting voltages, and finally input,output linearity is restored by mapping the output voltages to current form through an expansion stage. The compressing and expanding operations confer on log-domain filters a number of desirable features, but they may be responsible for the loss of external linearity. In this paper, sufficient conditions for the external linearity of log-domain LC-ladders are established, and the local nature of this external linearity is highlighted. Certain log-domain LC-ladders employing floating capacitors may exhibit externally nonlinear behaviour even for zero input and very small initial conditions. We show how transistor parasitic capacitances are central to the emergence of this behaviour, and must be incorporated in the circuit model. Copyright © 2006 John Wiley & Sons, Ltd. [source]