Home About us Contact | |||
Parallel-plate Rheometer (parallel-plate + rheometer)
Selected AbstractsEutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature,ADVANCED FUNCTIONAL MATERIALS, Issue 7 2008Michael D. Dickey Abstract This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well- ;suited for this application because of its rheological properties at room temperature: it behaves like an elastic material until it experiences a critical surface stress, at which point it yields and flows readily. These properties allow EGaIn to fill microchannels rapidly when sufficient pressure is applied to the inlet of the channels, yet maintain structural stability within the channels once ambient pressure is restored. Experiments conducted in microfluidic channels, and in a parallel-plate rheometer, suggest that EGaIn's behavior is dictated by the properties of its surface (predominantly gallium oxide, as determined by Auger measurement s); these two experiments both yield approximately the same number for the critical surface stress required to induce EGaIn to flow (,0 .5,N/m). This analysis,which shows that the pressure that must be exceeded for EGaIn to flow through a microchannel is inversely proportional to the critical (i.e., smallest) dimension of the channel,is useful to guide future fabrication of microfluidic channels to mold EGaIn into functional microstructures. [source] Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008T. N. Abraham Abstract Poly(ethylene oxide) (PEO) based nanocomposites were prepared by the dispersion of multiwall carbon nanotubes (MWCNTs) in aqueous solution. MWCNTs were added up to 4 wt % of the PEO matrix. The dynamic viscoelastic behavior of the PEO/MWCNT nanocomposites was assessed with a strain-controlled parallel-plate rheometer. Prominent increases in the shear viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content. Dynamic and isothermal differential scanning calorimetry studies indicated a significant decrease in the crystallization temperature as a result of the incorporation of MWCNTs; these composites can find applications as crystallizable switching components for shape-memory polymer systems with adjustable switching temperatures. The solid-state, direct-current conductivity was also enhanced by the incorporation of MWCNTs. The dispersion level of the MWCNTs was investigated with scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Measuring anisotropic thermal conduction in polyisobutylene following step shear strainsAICHE JOURNAL, Issue 3 2000Hadjira Iddir The connection between polymer chain orientation and several macroscopic properties in a polymer melt was studied using mechanical and optical techniques. Anisotropic thermal conductivity following shear deformation was measured using forced Rayleigh light scattering, the refractive index tensor is followed using birefringence measurements, and the stress was measured mechanically in a parallel-plate rheometer. The thermal diffusivity measured in the flow and neutral directions increased and decreased, respectively, immediately following the deformation. These quantities then relaxed to the equilibrium value on the time-scale of the stress-relaxation memory. Comparison of the difference between measured flow and neutral direction thermal diffusivities with the analogous flow-induced birefringence in the same deformation provided indirect evidence for a linear relation between stress and thermal diffusivity at two different values of strain. Mechanical measurements were used to characterize the memory of the fluid. [source] Synthesis, thermal, and rheological properties of poly(trimethylene terephthalate)/BaSO4 nanocompositesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 10 2009Chenguang Yao Abstract A novel method was developed for fabricating poly(trimethylene terephthalate) (PTT)/BaSO4 nanocomposites using in situ polymerization. A nano-BaSO4 suspension was prepared by reacting H2SO4 with Ba(OH)2 in 1,3-propanediol (PDO). The mean size of original nano-BaSO4 is 15,23,nm. PTT matrix was synthesized by condensation polymerization of bis(3-hydroxypropyl terephthalate) after the completion of transesterification of dimethyl terephthalate (DMT) with PDO. It was found that the addition of BaSO4 had little influence on the synthesis of PTT. The properties of nanocomposites with a wide range of BaSO4 fraction were systematically studied. The morphologies of the composites were investigated by transmission electron microscopy (TEM), which showed that agglomerate structures did not form until BaSO4 content higher than 8,wt%. The thermal properties of the nanocomposites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results revealed that the triple endothermic melting phenomenon is only observed for the nanocomposites which contained 4,wt% BaSO4, other samples exhibit double endothermic melting. These results indicated that nano-BaSO4 could induce a microcrystal to form more perfect morphology and restrain the formation of much thicker lamellar crystallinity, that is, nano-BaSO4 could induce the formation of more uniform crystallinity. Besides, the crystallization ability of the composites was greatly improved by loading nano-BaSO4. The TGA results suggested that nano-BaSO4 slightly increased the maximum-decomposing-rate temperature 1 (Tmax1), but markedly increased the maximum-decomposing-rate temperature 2 (Tmax2). Furthermore, the steady-state shear behavior of samples was investigated by a parallel-plate rheometer. The storage modulus (G') and loss modulus (G") curves shifted to higher modulus upon addition of 2,16,wt% of nano-BaSO4. All of the samples investigated exhibited the expected shear-thinning behavior. Proper contents of nano-BaSO4 would decrease the shear viscosity of nanocomposites, whereas superfluous amounts would greatly increase the viscosity of nanocomposites and the composites which loaded 8,wt% nano-BaSO4 revealed an equivalent shear viscosity compared to pure PTT. Copyright © 2008 John Wiley & Sons, Ltd. [source] Viscoelastic and Histologic Properties in Scarred Rabbit Vocal Folds After Mesenchymal Stem Cell Injection,THE LARYNGOSCOPE, Issue 7 2006S Hertegård MD Abstract Objective/Hypothesis: The aim of this study was to analyze the short-term viscoelastic and histologic properties of scarred rabbit vocal folds after injection of human mesenchymal stem cells (MSC) as well as the degree of MSC survival. Because MSCs are antiinflammatory and regenerate mesenchymal tissues, can MSC injection reduce vocal fold scarring after injury? Study Design: Twelve vocal folds from 10 New Zealand rabbits were scarred by a localized resection and injected with human MSC or saline. Eight vocal folds were left as controls. Material and Methods: After 4 weeks, 10 larynges were stained for histology and evaluation of the lamina propria thickness. Collagen type I content was analyzed from six rabbits. MSC survival was analyzed by fluorescent in situ hybridization staining from three rabbits. Viscoelasticity for 10 vocal folds was analyzed in a parallel-plate rheometer. Results: The rheometry on fresh-frozen samples showed decreased dynamic viscosity and lower elastic modulus (P < .01) in the scarred samples injected with MSC as compared with the untreated scarred group. Normal controls had lower dynamic viscosity and elastic modulus as compared with the scarred untreated and treated vocal folds (P < .01). Histologic analysis showed a higher content of collagen type 1 in the scarred samples as compared with the normal vocal folds and with the scarred folds treated with MSC. MSCs remained in all samples analyzed. Conclusions: The treated scarred vocal folds showed persistent MSC. Injection of scarred rabbit vocal folds with MSC rendered improved viscoelastic parameters and less signs of scarring expressed as collagen content in comparison to the untreated scarred vocal folds. [source] Response of a concentrated monoclonal antibody formulation to high shearBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009Jared S. Bee Abstract There is concern that shear could cause protein unfolding or aggregation during commercial biopharmaceutical production. In this work we exposed two concentrated immunoglobulin-G1 (IgG1) monoclonal antibody (mAb, at >100 mg/mL) formulations to shear rates between 20,000 and 250,000 s,1 for between 5 min and 30 ms using a parallel-plate and capillary rheometer, respectively. The maximum shear and force exposures were far in excess of those expected during normal processing operations (20,000 s,1 and 0.06 pN, respectively). We used multiple characterization techniques to determine if there was any detectable aggregation. We found that shear alone did not cause aggregation, but that prolonged exposure to shear in the stainless steel parallel-plate rheometer caused a very minor reversible aggregation (<0.3%). Additionally, shear did not alter aggregate populations in formulations containing 17% preformed heat-induced aggregates of a mAb. We calculate that the forces applied to a protein by production shear exposures (<0.06 pN) are small when compared with the 140 pN force expected at the air,water interface or the 20,150 pN forces required to mechanically unfold proteins described in the atomic force microscope (AFM) literature. Therefore, we suggest that in many cases, air-bubble entrainment, adsorption to solid surfaces (with possible shear synergy), contamination by particulates, or pump cavitation stresses could be much more important causes of aggregation than shear exposure during production. Biotechnol. Bioeng. 2009;103: 936,943. © 2009 Wiley Periodicals, Inc. [source] |