Home About us Contact | |||
Paracrine Regulator (paracrine + regulator)
Selected AbstractsRole of EG-VEGF in human placentation: Physiological and pathological implicationsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Pascale Hoffmann Abstract Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE. [source] RELAXANT EFFECT OF ADRENOMEDULLIN ON BOVINE ISOLATED IRIS SPHINCTER MUSCLE UNDER RESTING CONDITIONSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2005Y Uchikawa SUMMARY 1.,The mechanisms involved in the fine adjustment of iris sphincter muscle tone are largely unknown. The aim of the present study was to clarify the effects of adrenomedullin on the resting tension of the bovine isolated iris sphincter muscle. 2.,The motor activity of the bovine isolated iris sphincter muscle was measured isometrically. The effects of adrenomedullin on resting tension were analysed in the presence of indomethacin. The presence of adrenomedullin mRNA in the preparation was determined by reverse transcription,polymerase chain reaction. Immunolabelling for adrenomedullin was also performed. 3.,Adrenomedullin significantly decreased the resting tension of the muscle. The relaxant effect of adrenomedullin was significantly inhibited by adrenomedullin (22,52), a putative antagonist for the adrenomedullin receptor, or calcitonin gene-related peptide (CGRP) (8,37), a putative antagonist for the CGRP1 receptor. The relaxant effect was almost completely blocked by a combination of adrenomedullin (22,52) and CGRP (8,37). 4.,The relaxant effect of adrenomedullin was also significantly diminished by 2,,5,-dideoxyadenosine, an inhibitor of adenylate cyclase, NG -nitro- l -arginine, an inhibitor of nitric oxide synthesis, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase. 5.,Reverse transcription,polymerase chain reaction analysis showed that adrenomedullin mRNA was expressed in the muscle strip. Immunopositive staining for adrenomedullin was detected in blood vessel cells and in the iris sphincter muscle cells. 6.,These results suggest that adrenomedullin may be an autocrine and paracrine regulator of the resting tension of the iris sphincter muscle. Its biological effects may be due to the direct involvement of adrenomedullin receptors and also to the stimulation of CGRP1 receptors. The stimulation of these receptors by the peptide leads to the activation of adenylate cyclase and soluble guanylate cyclase and subsequent relaxation of the muscle strip. [source] Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesityCLINICAL ENDOCRINOLOGY, Issue 3 2009M. Mraz Summary Objective, Fibroblast growth factor-21 (FGF21) is a novel endocrine and paracrine regulator of metabolic homeostasis. The aim of our study was to measure its serum concentrations in patients with obesity, obesity and type 2 diabetes mellitus (T2DM) and healthy subjects (C), and to assess the changes of its circulating levels and mRNA expression after dietary and pharmacological interventions. Design, We measured biochemical parameters, serum FGF21, adiponectin, leptin and insulin levels by commercial ELISA and RIA kits, and mRNA expression in the liver, subcutaneous and visceral fat by RT PCR in 26 obese patients, 11 T2DM patients and 32 control subjects. The interventions were acute hyperinsulinaemia during isoglycaemic,hyperinsulinaemic clamp, very low calorie diet (VLCD) and 3 months treatment with PPAR-, agonist fenofibrate. Results, Baseline serum FGF21 levels were significantly higher in both obese and T2DM patients relative to healthy controls. FGF21 levels in obesity did not significantly differ from T2DM group. Both 3 weeks of VLCD and 3 months of fenofibrate treatment significantly increased FGF21 levels. FGF21 mRNA expression in visceral fat was twofold higher in obesity relative to C group, while it did not differ in subcutaneous fat. VLCD significantly increased FGF21 mRNA expression in subcutaneous fat of obesity. 3-h hyperinsulinaemia during the clamp increased FGF21 levels in T2DM but not in C group. Conclusion, An increase in FGF21 levels after VLCD and fenofibrate treatment may contribute to positive metabolic effect of these interventions and suggests the possibility of direct positive metabolic effects of FGF21 in humans. [source] The release of leptin and its effect on hormone release from human pituitary adenomasCLINICAL ENDOCRINOLOGY, Issue 6 2001Márta Korbonits BACKGROUND Leptin is the protein product of the obese gene, known to play an important role in body energy balance. The leptin receptor exists in numerous isoforms, the long isoform being the major form involved in signal transduction. Leptin expression has recently been demonstrated in the human pituitary, both in normal tissue and in pituitary adenomas. The long isoform of the leptin receptor has also been shown to be present in pituitary adenomas; however, contrasting results have been obtained regarding its expression in the normal human pituitary. AIM The aim of this study was (i) to investigate the presence and pattern of distribution of leptin mRNA and the long isoform of its receptor mRNA in the normal pituitary and in different types of pituitary adenomas with RT-PCR; (ii) to study leptin secretion from human pituitary tumours in culture and (iii) to assess in vitro pituitary hormone release following stimulation with human leptin. RESULTS Leptin receptor long isoform expression was detected in 2/4 GH-secreting adenomas, 12/17 non-functioning adenomas, 5/9 ACTH-secreting adenomas, 1/2 prolactinomas, 2/2 FSH-secreting adenomas and 5/5 normal pituitaries. The receptor long isoform did not segregate with any particular tumour type, and varying levels of expression were detected between the tissues studied. Leptin mRNA was detected at a low level of expression in 2/7 GH-secreting adenomas, 9/14 non-functioning adenomas, 2/3 ACTH-secreting adenomas, 1/3 prolactinomas and 1/3 FSH-secreting adenomas. We were unable to detect leptin mRNA in any of the five normal pituitaries removed at autopsy; however, immunostaining of a non-tumorous pituitary adjacent to an adenoma removed at transsphenoidal surgery showed scattered leptin positive cells. Culture of pituitary adenomas showed that 16/47 released leptin into the incubation media. Leptin release did not correlate with tumour type or with any of the other pituitary hormones released. In vitro leptin stimulation of pituitary tumours caused stimulation of FSH and ,-subunit secretion from a non-functioning adenoma and TSH secretion from a somatotroph adenoma. CONCLUSION We conclude that not only is leptin stored within the pituitary, but it may also be released from pituitary cells and modulate other pituitary hormone secretion. Pituitary leptin may therefore be a novel paracrine regulator of pituitary function. [source] |