Para Substituent (para + substituent)

Distribution by Scientific Domains


Selected Abstracts


Variable Coordination Modes of Benzaldehyde Thiosemicarbazones , Synthesis, Structure, and Electrochemical Properties of Some Ruthenium Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 29 2008
Swati Dutta
Abstract Reaction of benzaldehyde thiosemicarbazones [H2LR, where H2 stands for the two protons, the hydrazinic proton, and the phenyl proton at the ortho position, with respect to the imine function and R (R = OCH3, CH3, H, Cl, and NO2) for the para substituent] with [Ru(PPh3)2(CO)2Cl2], carried out in refluxing ethanol, afforded monomeric complexes of type [Ru(PPh3)2(CO)(HLR)(H)]. The crystal structure of the [Ru(PPh3)2(CO)(HLNO2)(H)] complex was determined. The thiosemicarbazone ligand is coordinated to the ruthenium center as a bidentate N,S-donor ligand forming a four-membered chelate ring. When the reaction of the thiosemicarbazones with [Ru(PPh3)2(CO)2Cl2] was carried out in refluxing toluene, a family of dimeric complexes of type [Ru2(PPh3)2(CO)2(LR)2] were obtained. The crystal structure of [Ru2(PPh3)2(CO)2(LCl)2] was determined. Each thiosemicarbazone ligand is coordinated to one ruthenium atom, by dissociation of the two protons, as a dianionic tridentate C,N,S-donor ligand, and at the same time the sulfur atom is also bonded to the second ruthenium center. 1H NMR spectra of the complexes of both types are in excellent agreement with their compositions. All the dimeric and monomeric complexes are diamagnetic (low-spin d6, S = 0) and show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry of the [Ru(PPh3)2(CO)(HLR)(H)] and [Ru2(PPh3)2(CO)2(LR)2] complexes show the ruthenium(II),ruthenium(III) oxidation within 0.48,0.73 V vs. SCE followed by a ruthenium(III),ruthenium(IV) oxidation within 1.09,1.47 V vs. SCE. Potentials of both the oxidations are found to correlate linearly with the electron-withdrawing character of the substituent R. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Pseudo-Octahedral Schiff Base Nickel(II) Complexes: Does Single Oxidation Always Lead to the Nickel(III) Valence Tautomer?

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 27 2008
Olaf Rotthaus
Abstract With the aim of establishing correlations between the ligand structure and the oxidation site in nickel complexes from Schiff base ligands, five ligands and their nickel complexes have been synthesized. The prototypical asymmetric Schiff base ligand HL1 contains both phenol and pyridine pendant arms with a pivotal imine nitrogen atom. Ligands HL2,5 differ from HL1 by either their phenolate para substituent, the hybridization of the pivotal nitrogen atom, and/or the N-donor properties of the pyridine moiety. The five complexes [Ni(L1,5)2] are obtained by treating the corresponding ligands with 0.5 equiv. of Ni(OAc)2·4H2O in the presence of NEt3. X-ray crystal-structure diffraction studies as well as DFT calculations reveal that [Ni(L1,5)2] involves a high-spin nickel(II) ion within a pseudo-octahedral geometry. The two ligands are arranged in a meridional fashion when the pivotal nitrogen atom is an imine {as in [Ni(L1,2)2] and [Ni(L4,5)2]}, while the fac isomer is preferred in [Ni(L3)2] (amino pivotal nitrogen atom). [Ni(L1)2] is characterized by an oxidation potential at ,0.17 V vs. Fc+/Fc. The one-electron-oxidized species [Ni(L1)2]+ exhibits an EPR signal at g = 2.21 attributed to a phenoxyl radical that is antiferromagnetically coupled to a high-spin NiII ion. [Ni(L2)2] differs from [Ni(L1)2] by the phenolate para substituent (a tert -butyl instead of the methoxyl group) and exhibits an oxidation potential that is ca. 0.16 V higher. Compared to [Ni(L1)2]+ the cation [Ni(L2)2]+ exhibits a SOMO that is more localized on the metal atom. The EPR and electrochemical signatures of [Ni(L3)2]+ are similar to those of [Ni(L1)2]+, thus showing that an imino to amino substitution compensates for a methoxy to tert -butyl one. Replacement of the pyridine by a quinoline group in [Ni(L4,5)2] makes the complexes slightly harder to oxidize. The EPR signatures of the cations [Ni(L4,5)2]+ are roughly similar to those of the pyridine analogs [Ni(L1,2)2]+. The oxidation site is thus not significantly affected by changes in the N-donor properties of the terminal imino nitrogen atom.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Synthesis and Properties of para -Substituted NCN-Pincer Palladium and Platinum Complexes

CHEMISTRY - A EUROPEAN JOURNAL, Issue 6 2004
Martijn Q. Slagt Dr.
Abstract A variety of para -substituted NCN-pincer palladium(II) and platinum(II) complexes [MX(NCN-Z)] (M=PdII, PtII; X=Cl, Br, I; NCN-Z=[2,6-(CH2NMe2)2C6H2 -4-Z],; Z=NO2, COOH, SO3H, PO(OEt)2, PO(OH)(OEt), PO(OH)2, CH2OH, SMe, NH2) were synthesised by routes involving substitution reactions, either prior to or, notably, after metalation of the ligand. The solubility of the pincer complexes is dominated by the nature of the para substituent Z, which renders several complexes water-soluble. The influence of the para substituent on the electronic properties of the metal centre was studied by 195Pt NMR spectroscopy and DFT calculations. Both the 195Pt chemical shift and the calculated natural population charge on platinum correlate linearly with the ,p Hammett substituent constants, and thus the electronic properties of predesigned pincer complexes can be predicted. The ,p value for the para -PtI group itself was determined to be ,1.18 in methanol and ,0.72 in water/methanol (1/1). Complexes substituted with protic functional groups (CH2OH, COOH) exist as dimers in the solid state due to intermolecular hydrogen-bonding interactions. Een verscheidenheid aan para-gesubstitueerde NCN-pincer-palladium(II) en -platina(II) complexen [MX(NCN-Z)] (M=PdII, PtII; X=Cl, Br, I; NCN-Z=[2,6-(CH2NMe2)C6H2 -4-Z],; Z=NO2, COOH, SO3H, PO(OEt)2, PO(OH)(OEt), PO(OH)2, CH2OH, SMe, NH2) is gesynthetiseerd via substitutiereacties zowel voor, en hoogst opmerkelijk, ook na de metallering van het ligand. De oplosbaarheid van de pincer-complexen wordt gedomineerd door de aard van de para -substituent Z, waardoor enkele van de complexen wateroplosbaar zijn. De invloed van de para -substituent op de elektronische eigenschappen van het metaalcentrum is bestudeerd met behulp van195Pt-NMR en DFT-berekeningen. Zowel de chemische verschuiving van de195Pt-kern, als de berekende ,natural population, lading op platina vertonen een lineaire correlatie met de ,pHammett-substituentconstante, hetgeen het voorspellen van de elektronische eigenschappen van nieuwe pincercomplexen mogelijk maakt. De ,p -waarde van de para-PtI eenheid blijkt respectievelijk ,1.18 in methanol en ,0.72 in waterige methanol (1/1, v/v) te zijn. Door de aanwezigheid van intermoleculaire waterstofbruggen komen de complexen met protische functionele groepen (CH2OH, COOH) in de vaste stof voor als dimeren. [source]


A Theoretical Investigation of Substituent Effects on the Absorption and Emission Properties of a Series of Terpyridylplatinum(II) Acetylide Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2005
Xiao-Juan Liu
Abstract A comprehensive calculational investigation has been carried out on a series of complexes of the type [(terpyridyl-R1)Pt(C,C-R2)], where terpyridyl-R1 is a series of substituted 2,2':6',2"-terpyridyl ligands and C,C-R2 is a series of substituted acetylide ligands. In one series of complexes (I), the energy of the electronic excited state is varied by changing the substituents on the terpyridyl ligand (R1). In a second series of complexes (II), this electronic structure variation is obtained by changing the para substituents (R2) of the acetylide ligand. The effect of varying the substituents on the lowest-energy excited states of the complexes has been assessed by calculating their electronic structures and excitation energies. We anticipated that introduction of electron-withdrawing substituents on the terpyridyl ligand will benefit the LLCT (or MLCT) and prohibit the nonradiative pathways via d-d transitions in these complexes; introduction of electron-donating substituents on the acetylide ligand can also prohibit the nonradiative pathways by increasing the energy gaps between the HOMO,LUMO and d-d transitions. The results also reveal that the lowest-energy excitations of all complexes of series I and IIa,b complexes are dominated by a ,(C,C),,,,*(terp) (LLCT) transition mixed with some energetically d,(Pt),,,terpyridyl (MLCT) transition. However, for the complexes IIc,IId, in which phenyl rings are introduced on the acetylide ligand, the lowest-lying absorptions of IIc and IId are predominately LLCT in character, with less MLCT mixture, due to a lower contribution of the Pt(d) orbital to the HOMO, while for IIe, with a stronger donor on the acetylide, the lowest-lying absorption is completely LLCT in character. The absorption and emission calculations using the TDDFT method are based on the optimized geometries obtained at the B3LYP/LanL2DZ and CIS/LanL2DZ levels, respectively. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]