Home About us Contact | |||
Palaeoclimate Reconstruction (palaeoclimate + reconstruction)
Selected AbstractsPalaeoclimate reconstruction on Big Lyakhovsky Island, north Siberia,hydrogen and oxygen isotopes in ice wedgesPERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2002Hanno Meyer Abstract Late Quaternary permafrost deposits on Big Lyakhovsky Island (New Siberian Islands, Russian Arctic) were studied with the aim of reconstructing the palaeoclimatic and palaeoenvironmental conditions of northern Siberia. Hydrogen and oxygen stable isotope analyses are presented for six different generations of ice wedges as well as for recent ice wedges and precipitation. An age of about 200 ka BP was determined for an autochtonous peat layer in ice-rich deposits by U/Th method, containing the oldest ice wedges ever analysed for hydrogen and oxygen isotopes. The palaeoclimatic reconstruction revealed a period of severe winter temperatures at that time. After a gap in the sedimentation history of several tens of thousands of years, ice-wedge growth was re-initiated around 50 ka BP by a short period of extremely cold winters and rapid sedimentation leading to ice-wedge burial and characteristic ice-soil wedges (,polosatics'). This corresponds to the initial stage for the Late Weichselian Ice Complex, a peculiar cryolithogenic periglacial formation typical of the lowlands of northern Siberia. The Ice Complex ice wedges reflect cold winters and similar climatic conditions as around 200 ka BP. With a sharp rise in ,18O of 6, and ,D of 40,, the warming trend between Pleistocene and Holocene ice wedges is documented. Stable isotope data of recent ice wedges show that Big Lyakhovsky Island has never been as warm in winter as today. Copyright © 2002 John Wiley & Sons, Ltd. [source] Classification of synchronous oceanic and atmospheric El Niño-Southern Oscillation (ENSO) events for palaeoclimate reconstructionINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2005Joëlle L. Gergis Abstract Since the mid-1970s, ENSO has changed in character to a predominance of El Niño conditions, the extreme phase of which appears coincidental with increases in global temperature records. Instrumental time series (<150 years) are too short to adequately address the significance of late twentieth-century ENSO variability, thus, multi-century palaeoclimate reconstructions derived from long proxy records are sought. Despite the global influence exerted by ENSO on society, limited consensus exists within the scientific community as to which index best defines the timing, duration and strength of events. Here we address issues associated with the complexity of ENSO characterisation by comparing the ,event capture' ability of two currently used indices of ENSO. It is suggested that the use of a sole ENSO index is undesirable as a given index is only indicative of one physical aspect of the phenomenon, and as such is unlikely to be representative of the wider interactions experienced in the coupled ocean-atmospheric system. In an attempt to describe more of the nature and evolution of ENSO events, the Coupled ENSO Index (CEI) classification scheme was devised to identify synchronous oceanic (Niño 3.4 SST) and atmospheric (Southern Oscillation Index) anomalies associated with ENSO for the instrumental period (1871,2003). The CEI is of practical relevance to the ENSO community as it provides an amplitude preserving instrumental baseline for the calibration of proxy records to reconstruct both components of the ENSO system. Analysis of the nature of instrumental ENSO events from the CEI suggests that the frequency and intensity of post-1970 ENSO events (when 50% of all extreme events identified occur) appears the most anomalous in the context of at least the past century. It is hoped that the CEI will facilitate palaeo-ENSO research to systematically resolve the long-term context of past ENSO behaviour to assess whether the apparently anomalous nature of late twentieth-century variability is unprecedented within existing palaeoclimate archives. Copyright © 2005 Royal Meteorological Society. [source] Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effectsPLANT CELL & ENVIRONMENT, Issue 10 2006LEONEL STERNBERG ABSTRACT The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3,6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose. [source] An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regionsBOREAS, Issue 1 2010WENYING JIANG Jiang, W., Guiot, J., Chu, G., Wu, H., Yuan, B., Hatté, C. & Guo, Z. 2009: An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas, 10.1111/j.1502-3885.2009.00115.x. ISSN 0300-9483. This study presents an improved method of the plant functional type modern analogues technique (PFT-MAT) in which environmental proxies and a moisture index (,, i.e. ratio of actual evapotranspiration to potential evapotranspiration) are used to constrain the selection of modern analogues. The method is tested using high-resolution, precisely dated palaeorecords (pollen, Pediastrum and ,18O of authigenic carbonate) from Lake Bayanchagan, northern China. The unconstrained and constrained PFT-MAT produces general agreement for Holocene climate changes, with a wet period between 11 000 and 5500 cal. yr BP and a warm interval between 11 000 and 8000 cal. yr BP. However, there are significant differences in the details of their reconstruction. The constrained PFT-MAT generally yields smaller error bars for the reconstructed climate parameters than the unconstrained PFT-MAT. In addition, three prominent climatic events are identified from the constrained reconstructions; namely, a cold event around 8400 cal. yr BP and two warm events around 6000 and 2000 cal. yr BP, which is consistent with other regional palaeoclimatic records. Our data show that changes in tree components correlate well with , variations during the entire Holocene, with the highest tree components and highest , values between 8000 and 5500 cal. yr BP, indicating the dominant role of , in the growth of trees in northern China rather than single temperature or precipitation. The improved PFT-MAT is therefore an efficient method for quantitative reconstructions of palaeoclimate in arid and semi-arid regions. [source] Classification of synchronous oceanic and atmospheric El Niño-Southern Oscillation (ENSO) events for palaeoclimate reconstructionINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2005Joëlle L. Gergis Abstract Since the mid-1970s, ENSO has changed in character to a predominance of El Niño conditions, the extreme phase of which appears coincidental with increases in global temperature records. Instrumental time series (<150 years) are too short to adequately address the significance of late twentieth-century ENSO variability, thus, multi-century palaeoclimate reconstructions derived from long proxy records are sought. Despite the global influence exerted by ENSO on society, limited consensus exists within the scientific community as to which index best defines the timing, duration and strength of events. Here we address issues associated with the complexity of ENSO characterisation by comparing the ,event capture' ability of two currently used indices of ENSO. It is suggested that the use of a sole ENSO index is undesirable as a given index is only indicative of one physical aspect of the phenomenon, and as such is unlikely to be representative of the wider interactions experienced in the coupled ocean-atmospheric system. In an attempt to describe more of the nature and evolution of ENSO events, the Coupled ENSO Index (CEI) classification scheme was devised to identify synchronous oceanic (Niño 3.4 SST) and atmospheric (Southern Oscillation Index) anomalies associated with ENSO for the instrumental period (1871,2003). The CEI is of practical relevance to the ENSO community as it provides an amplitude preserving instrumental baseline for the calibration of proxy records to reconstruct both components of the ENSO system. Analysis of the nature of instrumental ENSO events from the CEI suggests that the frequency and intensity of post-1970 ENSO events (when 50% of all extreme events identified occur) appears the most anomalous in the context of at least the past century. It is hoped that the CEI will facilitate palaeo-ENSO research to systematically resolve the long-term context of past ENSO behaviour to assess whether the apparently anomalous nature of late twentieth-century variability is unprecedented within existing palaeoclimate archives. Copyright © 2005 Royal Meteorological Society. [source] Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives,JOURNAL OF QUATERNARY SCIENCE, Issue 6 2006Elena Ortu Abstract Transfer functions are an efficient tool for the quantitative reconstruction of past climate from low to mid-elevation pollen sites. However, the application of existing methods to high-altitude pollen assemblages frequently leads to unrealistic results. In the aim of understanding the causes of these biases, the standard ,best modern analogue' method has been applied to two high-altitude pollen sequences to provide quantitative climate estimates for the Lateglacial and Holocene periods. Both pollen sequences (Laghi dell'Orgials, 2130,m, SW aspect and Lago delle Fate, 2240,m, E aspect) are located in the subalpine belt, on opposing sides of the St. Anna di Vinadio Valley (Italian Maritime Alps). Different results were obtained from the two sequences. The largest differences occurred in palaeotemperature reconstruction, with notable differences in both the values and trends at each site. These biases may be attributed to: (1) a lack of high elevation ,best modern analogues' in the database of modern samples; (2) the problem of pollen taxa that have multiple climatic significance; (3) problems related to the complexity of mountainous ecosystems, such as the phenomenon of uphill transport of tree pollen by wind. Possible improvements to the reconstruction process are discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source] Seasonal records of climatic change in annually laminated tufas: short review and future prospects,JOURNAL OF QUATERNARY SCIENCE, Issue 5 2005J. E. Andrews Abstract Many Recent and fossil freshwater tufa stromatolites contain millimetre-scale, alternating laminae of dense micrite and more porous or sparry crystalline calcites. These alternating laminae have been interpreted to represent seasonally controlled differences in the biotic activity of microbes, and/or seasonally controlled changes in the rate of calcification. Either way, couplets of these microbially mediated alternating calcified laminae are generally agreed to represent annual seasonality. Combined stable isotope (,18O and ,13C) and trace element (Mg, Sr, Ba) geochemistry from Recent tufa stromatolites show that seasonal climatic information is available from these calcites. Variability in ,18O (and in one case Mg concentration) has been shown to be controlled primarily by stream temperature change, usually driven by solar insolation. In arid climates, seasonal evaporation can also cause ,18O enrichment by at least 1,. Variability in ,13C results potentially from: (1) seasonal change in plant uptake of 12C-enriched CO2; (2) seasonal change in degassing of 12C-enriched CO2 in the aquifer system; and (3) precipitation of calcite along the aquifer or river flow path, a process that increases ,13C of dissolved inorganic carbon (DIC) in the remaining water. Mechanisms 2 and 3 are linked because calcite precipitates in aquifers where degassing occurs, e.g. air pockets. The latter mechanism for ,13C enrichment has also been shown to cause sympathetic variation between trace element/Ca ratios and ,13C because trace elements with partition coefficients much greater than 1 (e.g. Sr, Ba) remain preferentially in solution. Since degassing in air pockets will be enhanced during decreased recharge when water saturation of the aquifer is lowest, sympathetic variation in trace element/Ca ratios and ,13C is a possible index of recharge and therefore precipitation intensity. High-resolution geochemical data from well-dated tufa stromatolites have great potential for Quaternary palaeoclimate reconstructions, possibly allowing recovery of annual seasonal climatic information including water temperature variation and change in rainfall intensity. However, careful consideration of diagenetic effects, particularly aggrading neomorphism, needs to be the next step. Copyright © 2005 John Wiley & Sons, Ltd. [source] |