Home About us Contact | |||
Arteriolar Wall (arteriolar + wall)
Selected AbstractsControl of muscle blood flow during exercise: local factors and integrative mechanismsACTA PHYSIOLOGICA, Issue 4 2010I. Sarelius Abstract Understanding the control mechanisms of blood flow within the vasculature of skeletal muscle is clearly fascinating from a theoretical point of view due to the extremely tight coupling of tissue oxygen demands and blood flow. It also has practical implications as impairment of muscle blood flow and its prevention/reversal by exercise training has a major impact on widespread diseases such as hypertension and diabetes. Here we analyse the role of mediators generated by skeletal muscle activity on smooth muscle relaxation in resistance vessels in vitro and in vivo. We summarize their cellular mechanisms of action and their relative roles in exercise hyperaemia with regard to early and late responses. We also discuss the consequences of interactions among mediators with regard to identifying their functional significance. We focus on (potential) mechanisms integrating the action of the mediators and their effects among the cells of the intact arteriolar wall. This integration occurs both locally, partly due to myoendothelial communication, and axially along the vascular tree, thus enabling the local responses to be manifest along an entire functional vessel path. Though the concept of signal integration is intriguing, its specific role on the control of exercise hyperaemia and the consequences of its modulation under physiological and pathophysiological conditions still await additional analysis. [source] Decreased activity of the smooth muscle Na+/Ca2+ exchanger impairs arteriolar myogenic reactivityTHE JOURNAL OF PHYSIOLOGY, Issue 6 2008Hema Raina Arteriolar myogenic vasoconstriction occurs when stretch or increased membrane tension leads to smooth muscle cell (SMC) depolarization and opening of voltage-gated Ca2+ channels. While the mechanism underlying the depolarization is uncertain a role for non-selective cation channels has been demonstrated. As such channels may be expected to pass Na+, we hypothesized that reverse mode Na+/Ca2+ exchange (NCX) may act to remove Na+ and in addition play a role in myogenic signalling through coupled Ca2+ entry. Further, reverse (Ca2+ entry) mode function of the NCX is favoured by the membrane potential found in myogenically active arterioles. All experiments were performed on isolated rat cremaster muscle first order arterioles (passive diameter ,150 ,m) which were pressurized in the absence of intraluminal flow. Reduction of extracellular Na+ to promote reverse-mode NCX activity caused significant, concentration-dependent vasoconstriction and increased intracellular Ca2+. This vasoconstriction was attenuated by the NCX inhibitors KB-R7943 and SEA 04000. Western blotting confirmed the existence of NCX protein while real-time PCR studies demonstrated that the major isoform expressed in the arteriolar wall was NCX1. Oligonucleotide knockdown (24 and 36 h) of NCX inhibited the vasoconstrictor response to reduced extracellular Na+ while also impairing both steady-state myogenic responses (as shown by pressure,diameter relationships) and acute reactivity to a 50 to 120 mmHg pressure step. The data are consistent with reverse mode activity of the NCX in arterioles and a contribution of this exchanger to myogenic vasoconstriction. [source] Multiple Mechanisms Of Early Hyperglycaemic Injury Of The Rat Intestinal MicrocirculationCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2002H Glenn Bohlen SUMMARY 1. Hyperglycaemia in the vast majority of humans with diabetes mellitus is the end result of profound insulin resistance secondary to obesity. For patients in treatment, hyperglycaemia is usually not sustained but, rather, occurs intermittently. In in vivo studies of the rat intestinal microcirculation, endothelial impairment occurs within 30 min at D -glucose concentrations , 300 mg/dL. Endothelial-dependent dilation to acetylcholine and constriction to noradrenaline is impaired. Vasodilation to exogenous nitric oxide (NO) remains normal. 2. When initiated before hyperglycaemia, suppression of oxygen radicals by both scavenging and pretreatment with cyclo-oxygenase blockade to prevent oxygen radical formation minimized endothelial impairments during hyperglycaemia. Neither treatment was effective in restoring endothelial function once it was damaged by hyperglycaemia. 3. A mechanism that may initiate the arachidonic acid, oxygen radical process is activation of specific isoforms of protein kinase C (PKC). De novo formation of diacylglycerol during hyperglycaemia activates PKC. Blockade of the ,II PKC isoform with LY-333531 prior to hyperglycaemia protected NO formation within the arteriolar wall, as judged with NO-sensitive microelectrodes. Furthermore, once suppression of endothelial dilation was present in untreated animals, PKC blockade could substantially restore endothelial-dependent dilation. 4. These results indicate that acute hyperglycaemia is far from benign and, in the rat, causes rapid endothelial impairment. Both oxygen radical scavenging and cyclo-oxygenase blockade prior to bouts of hyperglycaemia minimize endothelial impairment with limited side effects. Blockade of specific PKC isozymes protects endothelial function both as a pre- or post-treatment during moderately severe hyperglycaemia. [source] Fibrosis and Stenosis of the Long Penetrating Cerebral Arteries: the Cause of the White Matter Pathology in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and LeukoencephalopathyBRAIN PATHOLOGY, Issue 4 2004Qing Miao MSc In cerebral autosomal dominant arteriopathy with subcortical infarcts and leuco-encephalopathy (CADASIL) the vascular smooth muscle cells are destroyed and granular osmiophilic material is deposited followed by fibrosis of the arterial wall. To verify whether true stenosis of the fibrotic white matter arteries is a key pathogenic event in CADASIL, we analyzed the thickness of walls (expressed as sclerotic index) and luminal diameters of penetrating arterioles in both grey matter and white matter of four CADASIL patients due to the C475T (R133C) mutation in the Notch3 gene and in 9 age-matched controls. We also reconstructed 9 arterioles from 1000 serial sections in two CADASIL patients. The thickness of the arteriolar walls in both grey matter and white matter was significantly increased in the CADASIL patients compared with controls. Furthermore, in CADASIL patients the arteriolar walls were significantly thicker in the white matter than in the grey matter. The distribution curve of arteriolar internal diameters in CADASIL patients shifted towards smaller sizes. In serial sections, the marked increase in the thickness of the white matter penetrating arterioles or their branches did not occur until the internal diameters had decreased to about 20 to 30 ,m and external diameters to about 100 to 130 ,m. In conclusion, long penetrating arterioles and their branches supplying subcortical structures in CADASIL are stenosed and their walls are thickened. This conforms to the abundance of infarcts and primary ischemic damage in CADASIL patients' white matter. [source] |