Arterial Endothelium (arterial + endothelium)

Distribution by Scientific Domains


Selected Abstracts


Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels

DEVELOPMENTAL DYNAMICS, Issue 7 2008
Emma J. Gordon
Abstract Expression of the hyaluronan receptor LYVE-1 is one of few available criteria used to discriminate lymphatic vessels from blood vessels. Until now, endothelial LYVE-1 expression was reported to be restricted to lymphatic vessels and to lymph node, liver, and spleen sinuses. Here, we provide the first evidence that LYVE-1 is expressed on blood vessels of the yolk sac during mouse embryogenesis. LYVE-1 is ubiquitously expressed in the yolk sac capillary plexus at E9.5, then becomes progressively down-regulated on arterial endothelium during vascular remodelling. LYVE-1 is also expressed on intra-embryonic arterial and venous endothelium at early embryonic stages and on endothelial cells of the lung and endocardium throughout embryogenesis. These findings have important implications for the use of LYVE-1 as a specific marker of the lymphatic vasculature during embryogenesis and neo-lymphangiogenesis. Our data are also the first demonstration, to our knowledge, that the mouse yolk sac is devoid of lymphatic vessels. Developmental Dynamics 237:1901,1909, 2008. © 2008 Wiley-Liss, Inc. [source]


Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-,-treated human aortic endothelial cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2001
Yung-Hsiang Chen
Abstract Attachment to, and migration of leukocytes into the vessel wall is an early event in atherogenesis. Expression of cell adhesion molecules by the arterial endothelium may play a major role in atherosclerosis. It has been suggested that antioxidants inhibit the expression of adhesion molecules and may thus attenuate the processes leading to atherosclerosis. In the present study, the effects of a potent water-soluble antioxidant, salvianolic acid B (Sal B), and an aqueous ethanolic extract (SME), both derived from a Chinese herb, Salvia miltiorrhiza, on the expression of endothelial-leukocyte adhesion molecules by tumor necrosis factor-, (TNF-,)-treated human aortic endothelial cells (HAECs) were investigated. When pretreated with SME (50 and 100 ,g/ml), the TNF-,-induced expression of vascular adhesion molecule-1 (VCAM-1) was notably attenuated (77.2,±,3.2% and 80.0,±,2.2%, respectively); and with Sal B (1, 2.5, 5, 10, and 20 ,g/ml), 84.5,±,1.9%, 78.8,±,1.2%, 58.9,±,0.4%, 58.7,±,0.9%, and 57.4,±,0.3%, respectively. Dose-dependent lowering of expression of intercellular cell adhesion molecule-1 (ICAM-1) was also seen with SME or Sal B. In contrast, the expression of endothelial cell selectin (E-selectin) was not affected. SME (50 ,g/ml) or Sal B (5 ,g/ml) significantly reduced the binding of the human monocytic cell line, U937, to TNF-,-stimulated HAECs (45.7,±,2.5% and 55.8,±,1.2%, respectively). SME or Sal B significantly inhibited TNF-,-induced activation of nuclear factor kappa B (NF-,B) in HAECs (0.36- and 0.48-fold, respectively). These results demonstrate that SME and Sal B have anti-inflammatory properties and may explain their anti-atherosclerotic properties. This new mechanism of action of Sal B and SME, in addition to their previously reported inhibition of LDL, may help explain their efficacy in the treatment of atherosclerosis. J. Cell. Biochem. 82:512,521, 2001. © 2001 Wiley-Liss, Inc. [source]


Cell-specific expression of manganese superoxide dismutase protein in the lungs of patients with respiratory distress syndrome, chronic lung disease, or persistent pulmonary hypertension,

PEDIATRIC PULMONOLOGY, Issue 3 2001
Tiina M. Asikainen MD
Abstract The developmental profile of manganese superoxide dismutase (MnSOD) and its regulation in hyperoxia vary between species. We hypothesized that MnSOD increases in human lung in response to oxygen treatment, although this response could be restricted to certain cell types and depend on gestational age. Therefore, the cell-specific expression of pulmonary immunoreactive MnSOD protein was investigated during development, and in patients with respiratory distress syndrome (RDS), chronic lung disease (CLD), or persistent pulmonary hypertension (PPHN). Throughout ontogenesis, all cell types expressed MnSOD, but the most intense positivity was found in bronchiolar epithelium and (pre-) type-II pneumocytes. MnSOD protein did not increase during development. The MnSOD staining pattern in arterial endothelium was more intense in RDS patients than in age-matched controls, but this may be related to induction of MnSOD by increased blood flow rather than by oxygen. MnSOD expression in other cell types of RDS, CLD, or PPHN patients did not differ from that in age-matched controls. We conclude that, in terms of mitochondrial enzymatic superoxide scavenging capacity, preterm infants are not more vulnerable than term infants to oxygen-induced lung injury at physiological oxygen concentrations. However, the inability to induce MnSOD in response to oxygen treatment may result in a poor outcome. Pediatr Pulmonol. 2001; 32:193,200. © 2001 Wiley-Liss, Inc. [source]


Reactivity of ,/, T cells to human 60-kd heat-shock protein and their cytotoxicity to aortic endothelial cells in Takayasu arteritis

ARTHRITIS & RHEUMATISM, Issue 8 2007
Sunil Kumar Chauhan
Objective Increased numbers of circulating ,/, T cells with a restricted T cell receptor repertoire, as well as colocalization of the expression of heat-shock protein Hsp60/65 and ,/, T cells in the arterial lesions of patients with Takayasu arteritis (TA), indicate that ,/, T cells may react to Hsp60 and cause damage to the arterial endothelium. In this study we investigated the proliferative responses of ,/, T cells to human Hsp60 and their cytotoxicity to human aortic endothelial cells (ECs) in patients with TA. Methods Blood samples were obtained from 12 patients with TA, 8 patients with systemic lupus erythematosus (SLE) (as disease controls), and 10 healthy control subjects. Proliferative responses of circulating ,/, T cells to human Hsp60 were detected by flow cytometry,based bromodeoxyuridine incorporation assay. Cytotoxicity of the ,/, T cells to human aortic ECs was analyzed by colorimetric lactate dehydrogenase release assay. Results The ,/, T cells of 11 of 12 patients with TA exhibited reactivity to Hsp60, whereas none of the ,/, T cells from patients with SLE or healthy controls showed reactivity (both P < 0.001). The mean ± SD proliferative response of ,/, T cells in patients with TA was 21.4 ± 11.3%, compared with 4.2 ± 1.2% in patients with SLE and 4.01 ± 1.82% in healthy controls (both P < 0.001). In addition, compared with the control groups, the ,/, T cells of patients with TA had increased spontaneous cytotoxicity to aortic ECs (22.1 ± 15.0% versus 9.6 ± 2.13% in SLE patients and 8.1 ± 4.7% in healthy controls; both P < 0.005), which was further enhanced following stimulation of ,/, T cells with Hsp60. The cytotoxicity of the ,/, T cells was significantly inhibited by treatment of these cells with concanamycin A and anti,Fas ligand,blocking antibodies. Conclusion The results show that ,/, T cells in patients with TA are reactive to Hsp60 and exhibit cytotoxicity to aortic ECs, suggesting a key role of Hsp60 and ,/, T cells in the pathogenesis of TA. [source]