Pair Consisting (pair + consisting)

Distribution by Scientific Domains


Selected Abstracts


Patterns of interspecific associations of stem gallers on willows

DIVERSITY AND DISTRIBUTIONS, Issue 6 2003
Jens-Peter Kopelke
Abstract., The pattern of interspecific associations of three stem-galling sawfly species (Euura atra, E. elaeagnos, E. purpureae) and three stem-galling gallmidge species (Rabdophaga sp. 3,5) was investigated on five willow taxa (Salix alba, S. fragilis, S. × rubens, S. elaeagnos, S. purpurea) at five natural sites in Central Europe. The willow species harboured specific species associations of two stem gallers, each pair consisting of one Euura and one Rabdophaga species. The stem gallers were patchily distributed and their densities varied significantly among willow host plant species, host plant individuals, and host plant sexes. Four of the six species showed a significant increase in galling rate with shoot length. The other two species were the sawfly and cecidomyiid pair that induce galls on S. purpurea. The preference of stem gallers to longer shoots was generally not related to higher larval performance in terms of survival. Only one species, Rabdophaga sp. 5, was found to be more abundant on male plants. The correlation of densities of the species pairs of stem gallers was independent of willow sexes. Species pairs of stem gallers co-occurring on the same willow species tended to attack different shoots within the same host plant individual. When species pairs co-occurred on shoots they were usually found in similar densities as when occurring alone on shoots. The stem-galling sawflies usually formed galls at the basal part of a shoot, whereas the gallmidge R. sp. 5 (R. sp. 3 and R. sp. 4 showed no clear tendency) preferred the middle or distal part of a shoot. This is interpreted with differences of their phenology and oviposition period. [source]


Sensitivity of bacterial coaggregation to chelating agents

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 4 2000
Suwimol Taweechaisupapong
Abstract Coaggregation between pairs of microorganisms was found to be inhibited by chelating agents, such as acetylacetone, citrate, EDTA and carboxymethylcellulose. Assays were conducted on eight pairs of periodontopathogens and one pair consisting of Escherichia coli and Saccharomyces cerevisiae. The inhibitory effects of the chelating agents were reversible except for Actinomyces naeslundii 12104, the adhesin of which was irreversibly inactivated. Even though the bacteria possessed different kinds of adhesins, their sensitivity to chelating agents appears to be a common property. Non-toxic chelating agents, such as carboxymethylcellulose and citrate, may prove to be useful anti-adhesins. [source]


A Comparison of Flow Dynamics and Flow Structure in a Riser and a Downer

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 4 2007
B. Wu
Abstract Flow development and flow dynamics were systematically investigated using local solids concentration measurements in a pair consisting of a downer (0.1,m I.D., 9.3,m high) and a riser of the same diameter (0.1,m I.D., 15.1,m high). Both statistical and chaos analysis were employed. Values for the Kolmogorov entropy (K), correlation dimension (D), and Hurst exponent (H) were estimated from time series of solids concentration measurements. Axial distributions of chaos parameters were more complex in the downer than those in the riser, especially in the entrance section. Flow in the downer was more uniform with a flatter core in all the radial profiles of chaos parameters. The radial profiles of K varied significantly with increasing axial levels due to different clustering behavior in the wall region of the downer. In both the riser and the downer, anti-persistent flow in the core region and persistent flow behavior near the wall were identified from the profiles of H. Different flow behavior in the region close to the wall in the downer and riser was characterized from the combination of the three chaos parameters. Relationships between chaos parameters and local time-averaged solids holdup in the core and wall regions of the developed sections in both the downer and riser were also analyzed. [source]


COEVOLUTION OF COLOR PATTERN AND THERMOREGULATORY BEHAVIOR IN POLYMORPHIC PYGMY GRASSHOPPERS TETRIX UNDULATA

EVOLUTION, Issue 2 2002
Anders Forsman
Abstract Ectothermic organisms, such as insects and reptiles, rely on external heat sources to control body temperature and possess physiological and behavioral traits that are temperature dependent. It has therefore been hypothesised that differences in body temperature resulting from phenotypic properties, such as color pattern, may translate into selection against thermally inferior phenotypes. We tested for costs and benefits of pale versus dark coloration by comparing the behaviors (i.e., basking duration and bouts) of pygmy grasshopper (Tetrix undulata) individuals exposed to experimental situations imposing a trade-off between temperature regulation and feeding. We used pairs consisting of two full-siblings of the same sex that represented different (genetically coded) color morphs but had shared identical conditions from the time of fertilization. Our results revealed significant differences in behavioral thermoregulation between dark and pale individuals in females, but not in males. Pale females spent more time feeding than dark females, regardless of whether feeding was associated with a risk of either hypothermia or overheating. In contrast, only minor differences in behavior (if any) were evident between individuals that belonged to the same color morph but had been painted black or gray to increase and decrease their heating rates. This suggests that the behavioral differences between individuals belonging to different color morphs are genetically determined, rather than simply reflecting a response to different heating rates. To test for effects of acclimation on behaviors, we used pairs of individuals that had been reared from hatchlings to adults under controlled conditions in either low or high temperature. The thermal regime experienced during rearing had little effect on behaviors during the experiments reported above, but significantly influenced the body temperatures selected in a laboratory thermal gradient. In females (but not in males) preferred body temperature also varied among individuals born to mothers belonging to different color morphs, suggesting that a genetic correlation exists between color pattern and temperature preferences. Collectively, these findings, at least in females, are consistent with the hypothesis of multiple-trait coevolution and suggest that the different color morphs represent alternative evolutionary strategies. [source]


A pair of diastereomeric 1:1 salts of (S)- and (R)-2-methylpiperazine with (2S,3S)-tartaric acid

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2009
Hiroshi Katagiri
The structures of diastereomeric pairs consisting of (S)- and (R)-2-methylpiperazine with (2S,3S)-tartaric acid are both 1:1 salts, namely (S)-2-methylpiperazinium (2S,3S)-tartrate dihydrate, C5H14N22+·C4H4O62,·2H2O, (I), and (R)-2-methylpiperazinium (2S,3S)-tartrate dihydrate, C5H14N22+·C4H4O62,·2H2O, (II), which reveal the formation of well defined ammonium carboxylate salts linked via strong intermolecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water molecules at regular intervals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen-bond contribution is stronger in the more soluble salt (II). [source]