Pacific Bluefin Tuna (pacific + bluefin_tuna)

Distribution by Scientific Domains


Selected Abstracts


Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean

FISHERIES OCEANOGRAPHY, Issue 5 2007
TAKASHI KITAGAWA
Abstract Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time-series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light-based longitude and sea surface temperature-based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid-winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11,14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon. [source]


Carrying capacity and survival strategy for the Pacific bluefin tuna, Thunnus orientalis, in the Western Pacific

FISHERIES OCEANOGRAPHY, Issue 2 2006
YASUO MATSUKAWA
Abstract The carrying capacity for the Pacific bluefin tuna at each life stage is estimated and its survival strategy is examined numerically, using a new method to define the hypothetical capacity, the standard population, and the search volumes that are necessary and are feasible for the tuna. The carrying capacity for the adult is estimated at 1,2 × 106 individuals, which corresponds with 5,10% of the hypothetical capacity and is comparable with the maximum levels of the southern and the Atlantic bluefin tuna populations. It is hypothesized semiquantitatively that the migration at each life stage and the remarkable decrement of growth at 120 days and about 40 cm occur as an evolutionary response to population excess over the carrying capacity. It is also hypothesized semiquantitatively that the early larvae have minimal food available in the Subtropical Water and develop the predatory morphology, high growth rate, and high mobility, however, at the expense of a high mortality as an evolutionary response to the tuna spawning in the Subtropical Water. This method may be an available tool to not only investigate the carrying capacity and survival strategy of a specific fish species, but also predict when and in how much abundance the fish species occurs in a specific area of its habitat. [source]


Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio,Oyashio transition region

FISHERIES OCEANOGRAPHY, Issue 3 2004
Takashi Kitagawa
Abstract Twenty-four archival tags were recovered from Pacific bluefin tuna previously released off Tsushima Island in the East China Sea. By analysis of the time-series data of the pressure and the ambient and internal temperature from the 24 tags, we examined the relationship between the tuna's pattern of diving and the thermocline depth. In the East China Sea, diving and feeding events occurred throughout almost the entire day in both winter and summer, suggesting that the purpose of diving is for feeding. In summer, the feeding frequency was greater than that in winter, which corresponds to the fact that growth is more rapid in summer than in winter. During summer in the Kuroshio,Oyashio transition region, on the other hand, feeding events were much more frequent than those in the East China Sea, in spite of a lower diving frequency. The mean horizontal distance traveled was also significantly higher and it seems that in this area they may move horizontally to feed on prey accumulated at the surface. We conclude that, in addition to the ambient temperature structure, the vertical and horizontal distribution of prey species plays an important role in the feeding behavior of Pacific bluefin tuna. One bluefin tuna migrated to the Oyashio frontal area, where both the horizontal and the vertical thermal gradients are much steeper. The fish spent most of the time on the warmer side of the front and often traveled horizontally to the colder side during the day, perhaps to feed. This implies that there is a thermal barrier effect, in this case from the Oyashio front, on their behavior. The frequency of feeding events was low, although all the monitored fish dived every dawn and dusk, irrespective of the seasons or location. It is possible that these twice-daily diving patterns occurred in response to the change in ambient light at sunrise and sunset. [source]


Changes in myoglobin content and proximate compositions of the dorsal ordinary muscles of full-cycle cultured Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) with body size

AQUACULTURE RESEARCH, Issue 2 2007
Yasuyuki Tsukamasa
Abstract We investigated the changes in myoglobin (Mb) content and proximate compositions of the cephalad parts of the dorsal ordinary muscles (Ce-DOM) of full-cycle cultured (FC) Pacific bluefin tuna [body length: 42.6,115.4 cm, body weight (BW): 1.7,38.4 kg, killed from July 2004 to October 2005]. The Mb content of Ce-DOM increased (P<0.01) until a BW of 7.0 kg was reached. However, the Mb content of Ce-DOM had a wide variety above a BW of 7.0 kg. On the other hand, the moisture, protein and ash contents of Ce-DOM of FC tuna decreased (P<0.05 and 0.01) with an increase in BW. However, the lipid content of Ce-DOM increased gradually above about a BW of 20.0 kg. Furthermore, the Mb content in protein of the Ce-DOM of FC tuna increased with an increase in BW. These results indicated that the increase in Mb content of Ce-DOM of FC tuna was not related to changes in proximate composition between a BW of 1.7 and 38.4 kg. [source]