PAS Domain (pa + domain)

Distribution by Scientific Domains


Selected Abstracts


Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR

MOLECULAR MICROBIOLOGY, Issue 6 2009
Ya-Wen He
Summary Xanthomonas campestris pv. campestris (Xcc) is known to regulate virulence through a quorum-sensing mechanism. Detection of the quorum-sensing signal DSF by sensor RpfC leads to activation of the response regulator RpfG, which influences virulence by degrading cyclic-di-GMP and by subsequent increasing expression of the global regulator Clp. In this study, we show that mutation of a response regulator RavR containing the GGDEF,EAL domains decreases Xcc virulence factor production. The functionality of RavR is dependent on its EAL domain-associated cyclic-di-GMP phosphodiesterase activity. Deletion of a multidomain sensor gene ravS, which shares the same operon with ravR, results in similar phenotype changes as the ravR mutant. In addition, the sensor mutant phenotypes can be rescued by in trans expression of the response regulator, supporting the notion that RavS and RavR constitute a two-component regulatory system. Significantly, mutation of either the PAS domain or key residues of RavS implicated in sensing low-oxygen tension abrogates the sensor activity in virulence regulation. Moreover, similar to the DSF signalling system, RavS/RavR regulates virulence gene expression through the global regulator Clp. These results outline a co-regulation mechanism that allows Xcc to integrate population density and environmental cues to modulate virulence factor production and adaptation. [source]


Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni

MOLECULAR MICROBIOLOGY, Issue 5 2008
Kathryn T. Elliott
Summary The energy taxis receptor Aer, in Escherichia coli, senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins Per, ARNT and Sim, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conserved domain (HCD) found in chemotaxis receptors. An apparent energy taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that have the domains of Aer divided between them. CetB has a PAS domain, while CetA has a predicted transmembrane region, HAMP domain and the HCD. In this study, we examined the expression of cetA and cetB and the biochemical properties of the proteins they encode. cetA and cetB are co-transcribed independently of the flagellar regulon. CetA has two transmembrane helices in a helical hairpin while CetB is a peripheral membrane protein tightly associated with the membrane. CetB levels are CetA dependent. Additionally, we demonstrated that both CetA and CetB participate in complexes, including a likely CetB dimer and a complex that may include both CetA and CetB. This study provides a foundation for further characterization of signal transduction mechanisms within CetA/CetB. [source]


Expression, crystallization and preliminary crystallographic analysis of the PAS domain of RsbP, a stress-response phosphatase from Bacillus subtilis

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2009
Masatomo Makino
RsbP, a regulator of RNA polymerase ,B activity in Bacillus subtilis, is a phosphatase containing a Per,Arnt,Sim (PAS) domain in its N-terminal region that is expected to sense energy stresses such as carbon, phosphate or oxygen starvation. Energy-stress signals are transmitted to the PAS domain and activate the C-terminal phosphatase domain of RsbP, leading to activation of the downstream anti-anti-,B factor RsbV. Finally, the general stress response is induced to protect the cells against further stresses. The recombinant PAS domain of RsbP was crystallized by the sitting-drop vapour-diffusion technique using 40% PEG 400 as a precipitant. The crystals belonged to space group P21, with unit-cell parameters a = 55.2, b = 71.7, c = 60.2,Å, , = 92.1°. Diffraction data were collected to a resolution of 1.6,Å. [source]


Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2009
Haiyan Zhao
YycGF is a highly conserved two-component signal transduction system that is specific to low-G+C Gram-positive bacteria, including many important human pathogens. It has been recognized as a crucial regulatory system for cell-wall metabolism. YycG, the histidine protein kinase of this system, is a multidomain transmembrane protein. The truncated cytoplasmic portion of YycG from Bacillus subtilis encompassing the PAS domain, the dimerization domain and the catalytic domain was expressed, purified and crystallized. X-ray data were collected to 2.8,Å resolution with a completeness of 98.2% and an overall Rmerge of 5.6%. The crystals belonged to space group P61 or P65, with unit-cell parameters a = 135.0, c = 133.0,Å. The selenomethionine-substituted version of the protein was crystallized and X-ray data were collected to 3.6,Å resolution for subsequent MAD phasing. [source]


Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix,loop,helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms

FEBS JOURNAL, Issue 11 2006
Yuji Mukaiyama
Neuronal PAS domain protein 2 (NPAS2) is a circadian rhythm-associated transcription factor with two heme-binding sites on two PAS domains. In the present study, we compared the optical absorption spectra, resonance Raman spectra, heme-binding kinetics and DNA-binding characteristics of the isolated fragment containing the N-terminal basic helix,loop,helix (bHLH) of the first PAS (PAS-A) domain of NPAS2 with those of the PAS-A domain alone. We found that the heme-bound bHLH-PAS-A domain mainly exists as a dimer in solution. The Soret absorption peak of the Fe(III) complex for bHLH-PAS-A (421 nm) was located at a wavelength 9 nm higher than for isolated PAS-A (412 nm). The axial ligand trans to CO in bHLH-PAS-A appears to be His, based on the resonance Raman spectra. In addition, the rate constant for heme association with apo-bHLH-PAS (3.3 × 107 mol,1·s,1) was more than two orders of magnitude higher than for association with apo-PAS-A (< 105 mol,1·s,1). These results suggest that the bHLH domain assists in stable heme binding to NPAS2. Both optical and resonance Raman spectra indicated that the Fe(II),NO heme complex is five-coordinated. Using the quartz-crystal microbalance method, we found that the bHLH-PAS-A domain binds specifically to the E-box DNA sequence in the presence, but not in the absence, of heme. On the basis of these results, we discuss the mode of heme binding by bHLH-PAS-A and its potential role in regulating DNA binding. [source]


Crystallization and X-ray diffraction studies of the fatty-acid responsive transcription factor FadR from Escherichia coli

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2000
Daan M. F. Van Aalten
FadR, an acylCoA-dependent Escherichia coli transcription factor controlling the expression of genes involved in fatty-acid degradation and synthesis, has been crystallized. Crystals of two binary complexes were obtained. The FadR,CoA complex crystallized in space group C2221, with unit-cell parameters a = 61.3, b = 102.0, c = 91.3,Å. The FadR,octanoyl-CoA complex crystallized in space group P6522, with unit-cell parameters a = b = 59.7, c = 296.2,Å. Both crystal forms diffracted to 3.5,Å on a rotating-anode generator. In both crystal forms, the asymmetric unit contains one subunit. The protein is known to be a homodimer; each subunit consists of two domains of unknown fold. For the acyl-CoA-binding domain, a previously undetected sequence homology to PAS domains, in particular the photoactive yellow protein, is reported. [source]


Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2010
Ricardo Adaixo
Per,Arnt,Sim (PAS) domains are ubiquitous in nature; they are ,130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported. [source]