Pyrolysis Conditions (pyrolysi + condition)

Distribution by Scientific Domains


Selected Abstracts


The study of fluidization fast pyrolysis of straw based on the biomass entrained flow gasification

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
Dong Li
Abstract Straw is considered to be a kind of low heating value biomass. A new entrained flow gasification process to utilize the straw was proposed and introduced fast pyrolysis as a straw pre-treatment unit for biomass entrained flow gasification process. This study was focused on the key factors influencing on the pyrolysis products of straw and optimized the pyrolysis condition based on the analysis results to meet the needs for biomass entrained flow gasification. Experiments were carried out at the temperature ranged from 300 to 600°C. Under certain particle size and optimized fluidization flow, the maximum liquid product yield was 43.1% at the temperature of 400°C and the maximum solid product yield was 65.6% at the temperature of 300°C. The characteristics of both liquid and solid products relevant to the gasification applications were analyzed. The results showed that the energy density of the products was far more higher than that of the crude straw. Finally, an optimal pyrolysis condition was proposed, which was considered to be a suitable feedstock solution for the biomass-slurry entrained flow gasification. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Characterization of biochar from fast pyrolysis and gasification systems

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2009
Catherine E. Brewer
Abstract Thermochemical processing of biomass produces a solid product containing char (mostly carbon) and ash. This char can be combusted for heat and power, gasified, activated for adsorption applications, or applied to soils as a soil amendment and carbon sequestration agent. The most advantageous use of a given char depends on its physical and chemical characteristics, although the relationship of char properties to these applications is not well understood. Chars from fast pyrolysis and gasification of switchgrass and corn stover were characterized by proximate analysis, CHNS elemental analysis, Brunauer-Emmet-Teller (BET) surface area, particle density, higher heating value (HHV), scanning electron microscopy, X-ray fluorescence ash content analysis, Fourier transform infrared spectroscopy using a photo-acoustic detector (FTIR-PAS), and quantitative 13C nuclear magnetic resonance spectroscopy (NMR) using direct polarization and magic angle spinning. Chars from the same feedstocks produced under slow pyrolysis conditions, and a commercial hardwood charcoal, were also characterized. Switchgrass and corn stover chars were found to have high ash content (32,55 wt %), much of which was silica. BET surface areas were low (7,50 m2/g) and HHVs ranged from 13 to 21 kJ/kg. The aromaticities from NMR, ranging between 81 and 94%, appeared to increase with reaction time. A pronounced decrease in aromatic CH functionality between slow pyrolysis and gasification chars was observed in NMR and FTIR-PAS spectra. NMR estimates of fused aromatic ring cluster size showed fast and slow pyrolysis chars to be similar (,7,8 rings per cluster), while higher-temperature gasification char was much more condensed (,17 rings per cluster). © 2009 American Institute of Chemical Engineers Environ Prog, 2009 [source]


Highly Efficient Fluorine-Promoted Intramolecular Condensation of Benzo[c]phenanthrene: A New Prospective on Direct Fullerene Synthesis

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 36 2009
Konstantin Yu.
Abstract Various functional groups have been tested as alternative promoters of the intramolecular condensation of benzo[c]phenanthrene under flash vacuum pyrolysis conditions. Methyl and fluorine functionalization were found to be promising approaches. Unexpectedly high selectivity was observed in the cyclization of fluorinated benzo[c]phenanthrenes. The mechanism for the condensation reaction and the advantages of fluorine as a promoter for the rational synthesis of fullerenes are discussed.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Coordination complexes of functionalized pyrazines with metal ions: reagents for the controlled release of flavourant molecules at elevated temperatures

FLAVOUR AND FRAGRANCE JOURNAL, Issue 2 2006
Colin Baillie
Abstract The potential for stabilization of volatile flavourant molecules such as functionalized pyrazines by coordination to metal ions, and the application of the resultant coordination complexes as controlled release agents at elevated temperatures were explored. New complexes containing the flavourant molecules 2,3,5-trimethylpyrazine (TMP), 2-ethyl-3-methylpyrazine (EMP) and 2-acetylpyrazine (ACP) with copper(II) and copper(I) salts were prepared and structurally characterized. Representative examples of known copper(II) and calcium(II) complexes containing pyrazine carboxylic acids were also prepared. The complexes were examined by thermal analysis techniques and demonstrated, by a combination of thermogravimetric (TGA) and pyrolysis GC,MS analyses, to act as convenient reagents for the release of the parent pyrazine at elevated temperatures. Thus, pyrolysis GC,MS revealed that the complex [Cu3Cl3(EMP)2]n cleanly releases EMP in 96.5% selectivity at 200 °C. Of particular significance is that the calcium complex [Ca(3-aminopyrazine-2-carboxylate)2·H2O], under ramped pyrolysis conditions, was shown to undergo decarboxylation prior to the release of 2-aminopyrazine (AMP), as essentially the only volatile component, in the temperature range 600,800 °C. This finding provides a precedent for the application of complexes of pyrazinecarboxylate salts with metal ions (of which an almost infinite number of combinations is potentially available) as controlled release agents of the parent pyrazine molecule at elevated temperatures, suitable for exploitation by the foodstuffs, flavour and fragrance industries. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2009
Encarnación Raymundo-Piñero
Abstract The sea provides a large variety of seaweeds that, because of their chemical composition, are fantastic precursors of nanotextured carbons. The carbons are obtained by the simple pyrolysis of the seaweeds under a nitrogen atmosphere between 600 and 900,°C, followed by rinsing the product in slightly acidic water. Depending on the origin of the seaweed and on the pyrolysis conditions, the synthesis may be oriented to give an oxygen-enriched carbon or to give a tuned micro/mesoporous carbon. The samples with a rich oxygenated surface functionality are excellent as supercapacitor electrodes in an aqueous medium whereas the perfectly tuned porous carbons are directly applicable for organic media. In both cases, the specific surface area of the attained carbons does not exceed 1300 m2 g,1, which results in high-density materials. As a consequence, the volumetric capacitance is very high, making these materials more interesting than activated carbons from the point of view of developing small and compact electric power sources. Such versatile carbons, obtained by a simple, ecological, and cheap process, could be well used for environment remediation such as water and air treatment. [source]


Application of the distributed activation energy model to biomass and biomass constituents devolatilization

AICHE JOURNAL, Issue 10 2009
María V. Navarro
Abstract In this study, an investigation about the thermal behavior of four different woods was carried out. The distributed activation energy model was applied to study the effect of heating rate on the reaction of single solids. Results obtained were used in the curve prediction of fraction of mass remaining and rate of mass loss vs. temperature at more realistic heating rates. The possible calculation of biomass samples behavior in pyrolysis conditions as the summation of their constituents, lignin, cellulose, and hemi-cellulose is also explored. All the samples show a weak interaction between the constituents which produce slight differences between experimental and calculated behavior. However, differences between experimental and calculated data lower than 2% offer a robust test of the applicability of the model on kinetic studies of a wide range of biomass samples, heating rates, data input format and equipment layout. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


State of the art of carbon molecular sieves supported on tubular ceramics for gas separation applications

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
Kelly Briceño
Abstract During recent years, research into alternative power generation and less polluting vehicles has been directed towards the fabrication of compact and efficient devices using hydrogen fuel cells. As a compact viable proposal, membrane reactors (MR) have been studied as means of providing a fuel cell with an on-board supply device for pure hydrogen streams obtained by reforming hydrocarbons. However, the development of MRs is strongly dependant on the membrane having high permeation flux and high selectivity ratios towards H2 in a mixture of gases. To meet this need, carbon membranes are proposed materials, which have pores that are the same size as the kinetic diameters of syngases. These would provide an alternative to polymers, metals and ceramics in MR applications. Moreover, a tubular shape is a highly recommended configuration for achieving a compact and large reaction surface area. However, it is not easy to obtain a supported and amorphous carbon layer from polymer pyrolysis because the fabrication methods, the type of precursor material, characteristics of the support and pyrolysis conditions are all closely connected. The combination of all these factors and the stability problems of carbon membranes have limited the use of carbon molecular sieves (CMS) in large-scale applications. This review attempts to provide an overview of the use of carbon membranes in MRs for gas separation. It also reviews the advances in the materials, fabrication methods and characterisation techniques of specific supported carbon molecular sieve membranes that have been supported on tubular carriers so they can take advantage of the high permeation and selectivity values previously reported for unsupported CMS. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]