Home About us Contact | |||
Pyridyl Substituents (pyridyl + substituent)
Selected AbstractsHantzsch 1,4-dihydropyridines containing a nitrooxyalkyl ester moiety to study calcium channel antagonist structure,activity relationships and nitric oxide releaseDRUG DEVELOPMENT RESEARCH, Issue 4 2000Jeffrey-Tri Nguyen Abstract A group of 3-nitrooxyalkyl 5-alkyl 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates were prepared using a modified Hantzsch reaction that involved the condensation of a nitrooxyalkyl acetoacetate with an alkyl 3-aminocrotonate and a pyridinecarboxaldehyde. 1H NMR nuclear Overhauser enhancement (nOe) studies for 3-(3-nitrooxypropyl) 5-isopropyl 1,4-dihydro-2,6-dimethyl-4-(2-pyridyl)-3,5-pyridinedicarboxylate (17) indicates a predominant rotamer exists in solution where the pyridyl nitrogen atom is orientated above the 1,4-DHP ring system, and the pyridyl nitrogen atom is antiperiplanar to the 1,4-DHP ring H-4 proton. Variable temperature 1H NMR studies (,30 to +60°C) showed the 1,4-DHP NH proton in 17 is H-bonded in CHCl3 solution. This interaction is believed to be due to intermolecular H-bonding between the pyridyl nitrogen free electron pair and the 1,4-DHP NH proton. In vitro calcium channel antagonist (CCA) activities were determined using a muscarinic-receptor-mediated Ca+2 -dependent contraction of guinea pig ileal longitudinal smooth muscle assay. This class of compounds exhibited lower CCA activity (IC50 = 5.3 × 10,6 to 3.5 × 10,8 M range) than the reference drug nifedipine (IC50 = 1.4 × 10,8 M). For compounds having C-3 ,CH2CH2ONO2 and C-4 pyridyl substituents, the C-5 alkyl was a determinant of CCA (i -Pr > the approximately equipotent i -Bu, t -Bu, and Et analogs). The point of attachment of the isomeric C-4 pyridyl substituent was a determinant of CCA when C-3 ,CH2CH2ONO2 and C-5 i -Pr substituents were present providing the potency profile 2-pyridyl , 3-pyridyl > 4-pyridyl. CCA with respect to the C-3 nitrooxyalkyl substituent was inversely dependent on the length of the alkyl spacer. The percent nitric oxide (·NO) released in vitro by this group of compounds (range of 0.03,0.43%/ONO2 group), quantified as nitrite by reaction with the Griess reagent, was lower than that for the reference drug glycerol trinitrate (3.81%/ONO2 group). Nitric oxide release studies showed that the %·NO released was dependent on the number of ONO2 groups/molecule. A QSAR study for this group of compounds showed a correlation between the specific polarizability descriptor (SpPol) and %·NO release. Drug Dev. Res. 51:233,243, 2000. © 2001 Wiley-Liss, Inc. [source] Coordination and hydrogen-bonding assemblies in hybrid reaction products between 5,10,15,20-tetra-4-pyridylporphyrin and dysprosium trinitrate hexahydrateACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2010Sophia Lipstman Reactions of the title free-base porphyrin compound (TPyP) with dysprosium trinitrate hexahydrate in different crystallization environments yielded two solid products, viz. [,-5,15-bis(pyridin-1-ium-4-yl)-10,20-di-4-pyridylporphyrin]bis[aquatetranitratodysprosium(III)] benzene solvate, [Dy2(NO3)8(C40H28N8)(H2O)2]·C6H6, (I), and 5,10,15,20-tetrakis(pyridin-1-ium-4-yl)porphyrin pentaaquadinitratodysprosate(III) pentanitrate diethanol solvate dihydrate, (C40H30N8)[Dy(NO3)2(H2O)5](NO3)5·2C2H6O·2H2O, (II). Compound (I) represents a 2:1 metal,porphyrin coordinated complex, which lies across a centre of inversion. Two trans -related pyridyl groups are involved in Dy coordination. The two other pyridyl substituents are protonated and involved in intermolecular hydrogen bonding along with the metal-coordinated water and nitrate ligands. Compound (II) represents an extended hydrogen-bonded assembly between the tetrakis(pyridin-1-ium-4-yl)porphyrin tetracation, the [Dy(NO3)2(H2O)5]+ cation and the free nitrate ions, as well as the ethanol and water solvent molecules. This report provides the first structural characterization of the exocyclic dysprosium complex with tetrapyridylporphyrin. It also demonstrates that charge balance can be readily achieved by protonation of the peripheral pyridyl functions, which then enhances their capacity in hydrogen bonding as H-atom donors rather than H-atom acceptors. [source] Hydrogen-bonded three-dimensional network of a lanthanum(III) exocyclic complex with 5,10,15,20-tetra-4-pyridylporphyrinACTA CRYSTALLOGRAPHICA SECTION C, Issue 10 2009Sophia Lipstman In the complex diaquatetranitrato[5-(pyridinium-4-yl)-10,15,20-tri-4-pyridylporphyrin]lanthanum(III) 1,2-dichlorobenzene trisolvate, [La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2, the lanthanum ion is coordinated to one of the peripheral pyridyl substituents of the porphyrin entity. Units of the complex are interlinked to one another in three dimensions by a network of O,H...N, O,H...O and N,H...O hydrogen bonds between the water ligands, nitrate ions, and pyridyl and pyridinium groups of adjacent species. This is the first structural report of an exocyclic complex of the tetrapyridylporphyrin ligand with any lanthanide ion and its self-assembly into a three-dimensional architecture sustained by hydrogen bonds. [source] Unsolvated 5,10,15,20-tetra-4-pyridylporphyrin, its sesquihydrate and its 2-chlorophenol disolvate: conformational versatility of the ligandACTA CRYSTALLOGRAPHICA SECTION C, Issue 9 2009Sophia Lipstman Unsolvated 5,10,15,20-tetra-4-pyridylporphyrin, C40H26N8, (I), its sesquihydrate, C40H26N8·1.514H2O, (II), and its 2-chlorophenol disolvate, C40H26N8·2C6H5ClO, (III), reveal different conformational features of the porphyrin core. In (I), the latter is severely deformed from planarity, apparently in order to optimize the intermolecular interactions and efficient crystal packing of the molecular entities. The molecular framework has a C1 symmetry. In (II), the porphyrin molecules are located on symmetry axes, preserving the marked deformation from planarity of the porphyrin core. The molecular units are interlinked into a single-framework supramolecular architecture by hydrogen bonding to one another via molecules of water, which lie on twofold rotation axes. In (III), the porphyrin molecules are located across centres of inversion and are characterized by a planar conformation of the 24-membered macrocyclic porphyrin ring. Two trans -related pyridyl substituents are hydrogen bonded to the 2-chlorophenol solvent molecules. The interporphyrin organization in (III) is similar to that observed for many other tetraarylporphyrin compounds. However, the organization observed in (I) and (II) is different and of a type rarely observed before. This study reports for the first time the crystal structure of the unsolvated tetrapyridylporphyrin. [source] 6-Substituted Indolo[1,2- c]quinazolines as New Antimicrobial AgentsARCHIV DER PHARMAZIE, Issue 9 2009Rondla Rohini Abstract A series of 2- o -arylidineaminophenylindoles and their cyclic derivatives (indolo[1,2- c]quinazolines) were synthesized. The reactions occurred under relatively mild conditions and afforded the desired product in good yields. Molecular structures of the synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, MS spectra, and elemental analyses. Furthermore, all the final products were screened for in-vitro antibacterial activity against three Gram-positive and three Gram-negative bacteria and also tested for their inhibitory action against three strains of fungi. Compound IIc showed potent activity against all the bacterial (except S. typhimurium) and fungal strains. Especially, compounds IIi and IIj which have isoquinolyl and pyridyl substituents displayed potent antibacterial as well as antifungal activities compared to those of the respective standard drugs Ampicillin and Ketoconazole. [source] |