PMN Recruitment (pmn + recruitment)

Distribution by Scientific Domains


Selected Abstracts


Smoke Exposure and Ethanol Ingestion Modulate Intrapulmonary Polymorphonuclear Leukocyte Killing, but Not Recruitment or Phagocytosis

ALCOHOLISM, Issue 9 2006
Elizabeth A. Vander Top
Background: People who smoke and abuse alcohol are uniquely susceptible to pulmonary infections caused by Streptococcus pneumoniae, the pneumococcus. The primary cellular defense against pneumococci within the lungs is the polymorphonuclear leukocyte (PMN). Cigarette smoke and ethanol (EtOH) are known to alter certain PMN functions, but little is known about their concurrent effects. Methods: Male Sprague,Dawley rats were exposed twice daily for 8 weeks to cigarette smoke (smoke-exposed) or room air (sham-exposed). During the final week of exposure, the rats were pair-fed a liquid diet containing either 36 or 0% EtOH calories. Polymorphonuclear leukocytes were prerecruited into the rats' lungs by transtracheal injection of lipopolysaccharide. Five hours later, the rats were infected transtracheally with S. pneumoniae, and PMN recruitment, phagocytosis, and bactericidal activity were quantified within their lungs. Chemokine levels were also measured in bronchoalveolar lavage fluids, lung homogenates, and sera. Results: Neither PMN recruitment nor phagocytic uptake of pneumococci was altered by EtOH ingestion or smoke exposure. Killing of the organisms, however, was significantly decreased in sham-exposed, but not smoke-exposed, rats ingesting EtOH. Parallel results were determined for serum cytokine-induced neutrophil chemoattractant-1 (CINC-1), with EtOH ingestion significantly decreasing the levels in sham-exposed, but not smoke-exposed, rats. Pulmonary levels of macrophage inflammatory protein-2 (MIP-2) and CINC-1 were highly elevated by the combination of EtOH and smoke. Conclusions: One week of EtOH ingestion by rats impaired the ability of their PMNs to kill S. pneumoniae within their lungs. This was not due to decreased recruitment of the PMNs to the lungs or to diminished phagocytosis of intrapulmonary pneumococci. The addition of twice-daily cigarette smoke exposure to this short-term EtOH ingestion model restored PMN bactericidal ability to levels observed in the absence of either treatment. These EtOH-induced and smoke-induced alterations in PMN killing may be related to alterations in both pulmonary and systemic inflammatory chemokine levels. [source]


Expression and function of CXCL16 in a novel model of gout

ARTHRITIS & RHEUMATISM, Issue 8 2010
Jeffrey H. Ruth
Objective To better define the activity of soluble CXCL16 in the recruitment of polymorphonuclear neutrophils (PMNs) in vivo, utilizing a novel animal model of gout involving engraftment of SCID mice with normal human synovial tissue (ST) injected intragraft with gouty human synovial fluid (SF). Methods For in vitro studies, a modified Boyden chemotaxis system was used to identify CXCL16 as an active recruitment factor for PMNs in gouty SF. Migration of PMNs could be reduced by neutralization of CXCL16 activity in gouty SF. For in vivo analyses, fluorescent dye,tagged PMNs were injected intravenously into SCID mice while, simultaneously, diluted gouty SF containing CXCL16, or depleted of CXCL16 by antibody blocking, was administered intragraft. In addition, the receptor for CXCL16, CXCR6, was inhibited by incubating PMNs with a neutralizing anti-CXCR6 antibody prior to injection into the mouse chimeras. Recruitment of PMNs to the gouty SF,injected normal human ST was then examined in this SCID mouse chimera system. Results CXCL16 concentrations were highly elevated in gouty SF, and PMNs were observed to migrate in response to CXCL16 in vitro. Normal human ST,SCID mouse chimeras injected intragraft with gouty SF that had been depleted of CXCL16 during PMN transfer showed a significant reduction of 50% in PMN recruitment to engrafted tissue as compared with that after administration of sham-depleted gouty SF. Similar findings were achieved when PMNs were incubated with a neutralizing anti-CXCR6 antibody before injection into chimeras. Conclusion Overall, the results of this study outline the effectiveness of the human,SCID mouse chimera system as a viable animal model of gout, serving to identify the primary function of CXCL16 as a significant mediator of in vivo recruitment of PMNs to gouty SF. [source]


Monosodium urate monohydrate crystal,induced inflammation in vivo: Quantitative histomorphometric analysis of cellular events

ARTHRITIS & RHEUMATISM, Issue 6 2002
C. Schiltz
Objective To quantify the inflammatory cell response in rat air pouch pseudosynovial membrane during monosodium urate monohydrate (MSU) crystal,induced inflammation. Methods In the rat air-pouch model, we used a computer-assisted histomorphometric method to quantify cell distributions, based on cell linear densities, in histologic sections of membranes from pouches injected with MSU or saline. The volume, white blood cell (WBC) count, and histamine content of the pouch exudates were determined at several time points. Results Injection of 10 mg of MSU crystals into the pouch produced an acute exudate. After peaking at 24 hours, the exudate volume and WBC count decreased spontaneously over the next 3 days, simulating the self-limited course of acute gout. Membrane thickness followed a parallel course. Membrane polymorphonuclear cell (PMN) linear densities were closely correlated with exudate WBC counts, suggesting PMN recruitment from the subintimal synovial membrane. Both monocyte/macrophage and mast cell linear densities increased in the subintimal layer 2 hours after crystal injection (P = 0.038 and P = 0.03, respectively, versus controls), whereas PMN linear densities showed 2 peaks, one at 4 hours and the other 24 hours. The exudate histamine content peaked 6 hours after crystal injection, when mast cell linear densities were minimal in the membranes, suggesting mast cell degranulation. Conclusion An increase in monocyte/macrophage and mast cell densities in the membrane preceded the PMN influx in the pouch membrane and exudate, suggesting that mast cells may be involved in the early phase of MSU crystal,induced inflammation, at least in this rat model. [source]