Home About us Contact | |||
PKC Inhibition (pkc + inhibition)
Selected AbstractsCharacterization of p21Ras -mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell linesJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004James S. Liou Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras -transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras -mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (,m). Cyclosporine A, which prevented the loss of ,m, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki,ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki,ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki,ras allele but not in a subline (Hke3) in which the mutated Ki,ras allele had been disrupted. The PKC inhibitor 1- O -hexadecyl-2- O -methyl-rac-glycerol (HMG), significantly reduced p21Ras -mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein. J. Cell. Physiol. 198: 277,294, 2004. © 2003 Wiley-Liss, Inc. [source] Protein Kinase C Activators as Synaptogenic and Memory TherapeuticsARCHIV DER PHARMAZIE, Issue 12 2009Miao-Kun Sun Abstract The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKC, deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics. [source] Verapamil augmentation of lithium treatment improves outcome in mania unresponsive to lithium alone: preliminary findings and a discussion of therapeutic mechanismsBIPOLAR DISORDERS, Issue 8 2008Alan G Mallinger Objectives:, Attenuation of protein kinase C (PKC) is a mechanism common to both established (lithium, valproate) and some novel (tamoxifen) antimanic agents. Verapamil, although primarily known as a calcium channel blocker, also has PKC inhibitory activity. Verapamil has shown antimanic activity in some but not all studies. Therefore, we investigated verapamil, used alone or as an adjunctive treatment, in manic patients who did not respond to an initial adequate trial of lithium. Methods:, Each study phase lasted three weeks. Subjects were treated openly with lithium in Phase 1 (n = 45). Those who failed to respond were randomly assigned to double-blind treatment in Phase 2 with either verapamil (n = 10) or continued-lithium (n = 8). Phase 2 nonresponders (n = 10) were assigned to combined verapamil/lithium in Phase 3. Results:, Response in Phase 2 did not differ significantly between verapamil and continued-lithium. During Phase 3, response to combined treatment was significantly better than overall response to monotherapy in Phase 2 (Fisher's Exact test, p = 0.043). Mania ratings improved during combined treatment in Phase 3 by 88.2% (linear mixed model analysis, F = 4.34, p = 0.013), compared with 10.5% improvement during Phase 2. Conclusions:, In this preliminary investigation, verapamil monotherapy did not demonstrate antimanic efficacy. By contrast, the combination of verapamil plus lithium was highly efficacious. Our findings thus suggest that verapamil may have potential utility as an adjunct to lithium. This effect may be mediated by additive actions on PKC inhibition, which may be an important mechanism for antimanic agents in general. [source] Mitogenic effects of oestrogen mediated by a non-genomic receptor in human colonBRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 12 2000Mr D. C. Winter Background Oestrogens are important mitogens in epithelial cancers, particularly where tumours express complementary receptors. While the traditional model of oestrogen action involves gene-directed (genomic) protein synthesis, it has been established that more rapid, non-genomic steroid hormone actions exist. This study investigated the hypothesis that oestrogen rapidly alters cell membrane activity, intracellular pH and nuclear kinetics in a mitogenic fashion. Methods Crypts isolated from human distal colon and colorectal cancer cell lines were used as robust models. DNA replication and intracellular pH were measured by radiolabelled thymidine incorporation (12 h) and spectrofluorescence imaging respectively. Genomic protein synthesis, sodium,hydrogen exchanger (NHE) and protein kinase C (PKC) activity were inhibited with cycloheximide, ethylisopropylamiloride and chelerythrine chloride respectively. Results Oestrogen induced a rapid (less than 5 min) cellular alkalinization of crypts and cancer cells that was sensitive to NHE blockade (P < 0·01) or PKC inhibition (P < 0·01). Oestrogen increased thymidine incorporation by 44 per cent in crypts and by up to 38 per cent in cancer cells (P < 0·01), and this was similarly reduced by inhibiting the NHE (P < 0·01) or PKC (P < 0·05). Conclusion Oestrogen rapidly activates cell membrane and nuclear kinetics by a non-genomic mechanism mediated by PKC but not gene-directed protein synthesis. © 2000 British Journal of Surgery Society Ltd [source] |