PKA Activity (pka + activity)

Distribution by Scientific Domains


Selected Abstracts


Local activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulation

DEVELOPMENTAL DYNAMICS, Issue 1 2003
Byung-Ho Song
Abstract cAMP-dependent protein kinase (PKA) has various biological roles in many organisms. However, little is known about its role in the developmental processes of vertebrates. In this study, we describe the functional analysis of PKA during gastrulation movements in Xenopus laevis. Overexpression of constitutively active PKA (cPKA) in the dorsal equatorial region of the embryo affects morphogenetic movement during gastrulation. We also show that intrinsic differences of PKA activities along the dorsoventral axis are set up and the level of PKA activity on the dorsal region is lower than that on the ventral region from late blastula to gastrula stages. In addition, PKA activation in animal explants inhibits activin-induced elongation. In cPKA-injected embryos, there were no changes in the expressions of markers involved in mesoderm specification, although the correct expression domains of these genes were altered. The effects of PKA activation can be restored by coexpression of PKI, a pseudosubstrate of PKA. We further analyzed the effects of PKA activation on the behavior of migratory gastrulating cells in vitro. Expression of cPKA in head mesoderm cells causes less polarized and/or randomized migration as demonstrated by a directional cell migration assay. Finally, we show that RhoA GTPase lies downstream of PKA, affecting activin-induced convergent extension movements. Taken together, these results suggest that overexpressed PKA can modulate a pathway responsible for morphogenetic movements during Xenopus gastrulation. Developmental Dynamics 227:91,103, 2003. © 2003 Wiley-Liss, Inc. [source]


AKAP-independent localization of type-II protein kinase A to dynamic actin microspikes

CYTOSKELETON, Issue 9 2009
Robert L. Rivard
Abstract Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RII, subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RII, and a GFP-RII, fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RII,-associated microspikes are highly dynamic and that the coupling of RII, to actin is tight, as the movement of both actin and RII, are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RII, and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RII, is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RII, fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


A novel role of differentiation-inducing factor-1 in Dictyostelium development, assessed by the restoration of a developmental defect in a mutant lacking mitogen-activated protein kinase ERK2

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2000
Hidekazu Kuwayama
It has been previously reported that the differentiating wild-type cells of Dictyostelium discoideum secrete a diffusible factor or factors that are able to rescue the developmental defect in the mutant lacking extracellular signal-regulated kinase 2 (ERK2), encoded by the gene erkB. In the present study, it is demonstrated that differentiation-inducing factor-1 (DIF-1) for stalk cells can mimic the role of the factor(s) and the mechanism of the action of DIF-1 in the erkB null mutant is also discussed. The mutant usually never forms multicellular aggregates, because of its defect in cyclic adenosine monophosphate (cAMP) signaling. In the presence of 100 n M DIF-1, however, the mutant cells formed tiny slugs, which eventually developed into small fruiting bodies. In contrast, DIF-1 never rescued the developmental arrest of other Dictyostelium mutants lacking adenylyl cyclase A (ACA), cAMP receptors cAR1 and cAR3, heterotrimeric G-protein, the cytosolic regulator of ACA, or the catalytic subunit of cAMP-dependent protein kinase (PKA-C). Most importantly, it was found that DIF-1 did not affect the cellular cAMP level, but rather elevated the transcriptional level of pka during the development of erkB null cells. These results suggest that DIF-1 may rescue the developmental defect in erkB null cells via the increase in PKA activity, thus giving the first conclusive evidence that DIF-1 plays a crucial role in the early events of Dictyostelium development as well as in prestalk and stalk cell induction. [source]


Local activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulation

DEVELOPMENTAL DYNAMICS, Issue 1 2003
Byung-Ho Song
Abstract cAMP-dependent protein kinase (PKA) has various biological roles in many organisms. However, little is known about its role in the developmental processes of vertebrates. In this study, we describe the functional analysis of PKA during gastrulation movements in Xenopus laevis. Overexpression of constitutively active PKA (cPKA) in the dorsal equatorial region of the embryo affects morphogenetic movement during gastrulation. We also show that intrinsic differences of PKA activities along the dorsoventral axis are set up and the level of PKA activity on the dorsal region is lower than that on the ventral region from late blastula to gastrula stages. In addition, PKA activation in animal explants inhibits activin-induced elongation. In cPKA-injected embryos, there were no changes in the expressions of markers involved in mesoderm specification, although the correct expression domains of these genes were altered. The effects of PKA activation can be restored by coexpression of PKI, a pseudosubstrate of PKA. We further analyzed the effects of PKA activation on the behavior of migratory gastrulating cells in vitro. Expression of cPKA in head mesoderm cells causes less polarized and/or randomized migration as demonstrated by a directional cell migration assay. Finally, we show that RhoA GTPase lies downstream of PKA, affecting activin-induced convergent extension movements. Taken together, these results suggest that overexpressed PKA can modulate a pathway responsible for morphogenetic movements during Xenopus gastrulation. Developmental Dynamics 227:91,103, 2003. © 2003 Wiley-Liss, Inc. [source]


The Effects of Disruption of A Kinase Anchoring Protein,Protein Kinase A Association on Protein Kinase A Signalling in Neuroendocrine Melanotroph Cells of Xenopus laevis

JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2006
G. J. H. Corstens
Abstract The secretory activity of melanotroph cells from Xenopus laevis is regulated by multiple neurotransmitters that act through adenylyl cyclase. Cyclic adenosine monophosphate (cAMP), acting on protein kinase A (PKA), stimulates the frequency of intracellular Ca2+ oscillations and the secretory activity of the melanotroph cell. Anchoring of PKA near target proteins is essential for many PKA-regulated processes, and the family of A kinase anchoring proteins (AKAPs) is involved in the compartmentalisation of PKA type II (PKA II) regulatory subunits. In the present study, we determined to what degree cAMP signalling in Xenopus melanotrophs depends on compartmentalised PKA II. For this purpose, a membrane-permeable stearated form of Ht31 (St-Ht31), which dislodges PKA II from AKAP (thus disrupting PKA II signalling), was used. The effect of St-Ht31 on both secretion of radiolabelled peptides and intracellular Ca2+ signalling by superfused Xenopus melanotrophs was assessed. St-Ht31 stimulated secretion but had no effect on Ca2+ signalling. We conclude Xenopus melanotrophs possess a St-Ht31-sensitive PKA II that is associated with the exocytosis machinery and, furthermore, that Ca2+ signalling is regulated by an AKAP-independent signalling system. Moreover, our results support a recent proposal that AKAP participates in regulating PKA activity independently from cAMP. [source]


Increased Consumption but Not Operant Self-administration of Ethanol in Mice Lacking the RII, Subunit of Protein Kinase A

ALCOHOLISM, Issue 5 2006
Frank M. Ferraro III
Background: Accumulating evidence indicates that adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) is involved in the neurobiological responses to ethanol. Previous reports indicate that mice lacking the RII, subunit of PKA (RII,,/,) voluntarily consume more ethanol than wild-type controls (RII,+/+) using 2-bottle testing procedures. Although such procedures primarily measure consummatory behavior, operant self-administration procedures allow analysis of consummatory as well as appetitive or "ethanol-seeking" behavior (i.e., lever pressing is required to gain access to the ethanol solution). Therefore, we determined whether the high ethanol consumption characteristic of RII,,/, mice would be complemented by increased appetitive ethanol-seeking behavior in an operant paradigm. Methods: RII,,/, (n=8) and RII,+/+ (n=8) mice were initially sucrose-faded until they were lever responding for nonsweetened ethanol (10, 14, and 18%). Following the self-administration testing, RII,+/+ and RII,,/, mice were given access to 2 bottles, one containing water and the other ethanol to replicate the voluntary ethanol drinking data previously from our laboratory. Finally, immediately after voluntary consumption all mice were again tested for self-administration of 10% ethanol. Alterations in the reinforcement schedule were also explored as RII,+/+ and RII,,/, mice were tested for self-administration of 10% ethanol at FR-3 and FR-5 schedules. Results: The RII,,/, mice displayed lower operant responding for ethanol and food reinforcement compared with RII,+/+ controls. However, this effect was driven by a significant increase in lever responses made by female RII,+/+ mice. When the excessive lever responses of the female RII,+/+ mice are accounted for, the RII,,/, mice show ethanol lever responses comparable to controls. Following operant self-administration testing, RII,,/, mice of both sexes consumed more ethanol solution compared with RII,+/+ mice during 2-bottle testing. Conclusions: Increased ingestion of ethanol by RII,,/, mice is likely the result of altered PKA activity within neuronal pathways that control ethanol-consummatory behaviors. Conversely, the RII, subunit of PKA appears not to play a critical role in neuronal pathways that regulate appetitive behaviors directed at obtaining ethanol. Finally, increased operant self-administration of food and ethanol by female wild-type mice was absent in female RII,,/, mice, suggesting that normal PKA signaling may be part of a general, and sex-dependent, mechanism involved with reinforcement-seeking behavior. [source]


Ethanol Uses cAMP-Independent Signal Transduction Mechanisms to Activate Proenkephalin Promoter Activity in Rat C6 Glioma Cells

ALCOHOLISM, Issue 7 2000
Xiaoju Yang
Background: Previous in vivo studies show that acute ethanol exposure sequentially increases protein kinase A (PKA) activity, the phosphorylation of the adenosine 3,:5,-cyclic monophosphate (cAMP) dependent transcription factor, CREB, and finally proenkephalin gene expression. The present study was conducted to determine if ethanol could activate directly the adenylyl cyclase pathway and thus enhance proenkephalin promoter activity. Methods: Cultured rat C6 glioma cells stably transfected with a segment of the five prime flanking region of rat proenkephalin promoter (nucleotide -2700 + 53) ligated to the chloramphenicol acetyltransferase (CAT) reporter gene were employed to study the effects of ethanol on proenkephalin promoter activity. This region of proenkephalin promoter contains two cAMP response elements (CRE-1 and CRE-2) and one AP2 site located in the region upstream of the TATA box. Cultures were exposed to ethanol, isoproterenol, and phorbol-12, myristate 13-acetate (PMA) alone and in combination, in the presence and absence of PKA and protein kinase C (PKC) inhibitors. Results: Ethanol and isoproterenol increased proenkephalin promoter activity in a dose-dependent manner. Ethanol had an additive effect on maximal isoproterenol-stimulated proenkephalin promoter activity, which suggested that ethanol used a cAMP-independent signai transduction pathway to increase proenkephalin promoter activation. In contrast with isoproterenol, ethanol exposure did not increase cAMP accumulation, PKA activity, or the phosphorylated form of CREB. However, ethanol exposure modestly increased PKC activity. The PKA-specific inhibitor, Rp-cAMP, dampened isoproterenol-induced activation of CAT activity but did not alter ethanol's ability to increase CAT activity. However, the PKC inhibitors, chelerthyrine and G07874, abrogated ethanol's effect of CAT activity but did not alter isoproterenol's effects. Conclusions: Ethanol enhanced proenkephalin promoter activity and potentiated isoproterenol stimulated promoter activity through a cAMP-independent pathway. [source]


Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4

MOLECULAR MICROBIOLOGY, Issue 4 2008
Peter Lee
Summary Hsf1 and Msn2/Msn4 transcription factors in Saccharomyces cerevisiae play important roles in cellular homeostasis by activating gene expression in response to multiple stresses including heat shock, oxidative stress and nutrient starvation. Although it has been known that nuclear import of Msn2 is inhibited by PKA-dependent phosphorylation, the mechanism for PKA-dependent regulation of Hsf1 is not well understood. Here we demonstrate that Yak1 kinase, which is under the negative control of PKA, activates both Hsf1 and Msn2 by phosphorylation when PKA activity is lowered by glucose depletion or by overexpressing Pde2 that hydrolyses cAMP. We show that Yak1 directly phosphorylates Hsf1 in vitro, leading to the increase in DNA binding activity of Hsf1. We also demonstrate that Yak1 phosphorylates Msn2 in vitro, but does not affect DNA binding activity of Msn2 or nuclear localization of Msn2 upon glucose depletion. These results suggest a central role for Yak1 in mediating PKA-dependent inhibition of Hsf1 and Msn2/Msn4. [source]