Home About us Contact | |||
P Concentrations (p + concentration)
Kinds of P Concentrations Selected AbstractsSorption of phosphorus in field-moist and air-dried samples from four weakly developed cultivated soil profilesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2007T. PeltovuoriArticle first published online: 9 FEB 200 Summary Sorption of phosphorus (P) in complete soil profiles in northern Europe is not adequately documented. I measured the sorption in genetic horizons of four cultivated soils (Inceptisols, Spodosol) in Finland using both field-moist and air-dried soil samples, fitted modified Freundlich equations (Q = a × Ib , q) to the data, and presented the results in quantity/intensity (Q/I) graphs. Least-squares-estimates for the parameters of the modified Freundlich equation (a, b, q) were found to be imprecise measures of sorption. Values derived from the fitted equations (the amount of P sorbed at the P concentration of 2 mg litre,1 and P buffering capacity at the same concentration) were more precise. Both were correlated with concentrations of oxalate-extractable iron and aluminium. In all soils, there was a distinct difference in sorption between the fertilized Ap horizons and the subsurface horizons, which retained P strongly. Most of the sorption capacity was located in the B horizons at depths between 0.3 and 0.7 m. The results demonstrate the effects of soil-forming processes and human impact on the sorption of P in the soils. Drying the samples prior to the sorption experiments altered the shape of the Q/I graphs. It increased dissolution of P at small P concentrations, sorption at large P concentrations, and the estimates for P buffering capacity. The effects of drying soil samples on the results and the imprecision of the parameters estimated with the modified Freundlich equation should be taken into account when interpreting results of Q/I experiments. [source] Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams?FRESHWATER BIOLOGY, Issue 4 2006MARCELO ARDÓN Summary 1. Lowland tropical streams have a chemically diverse detrital resource base, where leaf quality could potentially alter the effect of high nutrient concentrations on leaf breakdown. This has important implications given the extent and magnitude of anthropogenic nutrient loading to the environment. 2. Here, we examine if leaf quality (as determined by concentrations of cellulose, lignin and tannins) mediates the effects of high ambient phosphorus (P) concentration on leaf breakdown in streams of lowland Costa Rica. We hypothesised that P would have a stronger effect on microbial and insect processing of high- than of low-quality leaves. 3. We selected three species that represented extremes of quality as measured in leaves of eight common riparian species. Species selected were, from high- to low-quality: Trema integerrima > Castilla elastica > Zygia longifolia. We incubated single-species leaf packs in five streams that had natural differences in ambient P concentration (10,140 ,g soluble reactive phosphorus (SRP) L,1), because of variable inputs of solute-rich groundwater and also in a stream that was experimentally enriched with P (approximately 200 ,g SRP L,1). 4. The breakdown rate of all three species varied among the six streams: T. integerrima (k -values range: 0.0451,0.129 day,1); C. elastica (k -values range: 0.0064,0.021 day,1); and Z. longifolia (k -values range: 0.002,0.008 day,1). Both ambient P concentration and flow velocity had significant effects on the breakdown rate of the three species. 5. Results supported our initial hypothesis that litter quality mediates the effect of high ambient P concentration on leaf processing by microbes and insects. The response of microbial respiration, fungal biomass and invertebrate density to high ambient P concentration was greater in Trema (high quality) than in Castilla or Zygia (low quality). Variation in flow velocity, however, confounded our ability to determine the magnitude of stimulation of breakdown rate by P. 6. Cellulose and lignin appeared to be the most important factors in determining the magnitude of P-stimulation. Surprisingly, leaf secondary compounds did not have an effect. This contradicts predictions made by other researchers, regarding the key role of plant secondary compounds in affecting leaf breakdown in tropical streams. [source] Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland speciesFUNCTIONAL ECOLOGY, Issue 6 2002C. A. Zabinski Summary 1Previous studies have shown that arbuscular mycorrhizas (AM) enhance the growth of the invasive forb Centaurea maculosa when growing with native grass species. Using 13CO2, we tested the hypothesis that this enhancement is explained by carbon transfer from native species to C. maculosa via mycorrhizal hyphal linkages. 2A C. maculosa plant was paired with one of five native species , three grasses (Festuca idahoensis, Koeleria cristata and Pseudoroegneria spicata) and two forbs (Achillea millefolium and Gaillardia aristata) , in pots that separated the plants with either a mesh barrier (28 µm, excludes fine roots but not hyphae) or a membrane barrier (0·45 µm, excludes roots and hyphae). 313CO2 was added to the atmosphere of either Centaurea or the native species after 20 weeks' growth. A 25 min pulse application was followed by 7 days' growth and subsequent harvest. 4The biomass response of C. maculosa was consistent with previous experiments: C. maculosa was larger when growing in mesh barrier pots, when hyphae were able to access the opposite side of the pot; in mesh barrier pots only, biomass varied with neighbouring species. Native plant biomass did not vary between mesh- vs membrane-barrier pots. 5There was no evidence of carbon transfer, either from the native plant to C. maculosa or in the reverse direction. 6Centaurea maculosa contained significantly more phosphorus in mesh-divided pots, but this depended on the neighbouring plant. The P concentration in C. maculosa was significantly higher in mesh-divided pots when growing with a grass and not a forb. Native species contained more P in mesh-divided pots than membrane-divided pots, and P concentration differed between species (higher in forbs than grasses), but did not vary between mesh- and membrane-divided pots. 7Our study suggests that C. maculosa is able to exploit its mycorrhizal symbiosis more effectively than the native grassland species. The mechanism for this appears to be luxury consumption of P through efficient utilization of extra-radical hyphae, but that effect is dependent on neighbouring species, and occurs when growing with a grass neighbour. 8Although no single study can disprove the carbon-transfer hypothesis, our work suggests that AM-mediated neighbour effects are the result of mycorrhizal networks that increase species' access to P. Whether the synergistic effects of neighbours are due to complementarity of AM fungal symbionts utilized by different plant species, or have to do with the structure of AM networks that develop more extensively with multiple host plants, remains to be investigated. [source] Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass speciesFUNCTIONAL ECOLOGY, Issue 6 2000S. P. Miller Abstract 1Two semiaquatic grasses, Panicum hemitomon Schultes and Leersia hexandra Schwartz, were grown for 12 weeks in sterilized soil in experimental mesocosms, with and without the addition of arbuscular mycorrhizal (AM) fungal inoculum (as nonsterilized soil), under the following rooting-zone flood regimes: waterlogged (W), free-draining (D), beginning W and ending D (W,D), and beginning D and ending W (D,W). The purpose of the experiment was to determine whether these controlled water regimes affected both colonization of wetland grasses by AM fungi and the effects of the colonization on various plant parameters. 2Water regime, addition of inoculum, and their interaction were highly significant effects on total and proportion of root length colonized by AM fungi. Trends were very similar for the two grass species. Colonization was less and plants smaller in the W and W,D than in the D and D,W treatments. The viability of mycorrhiza at the end of the experiment, as measured by vital staining techniques, was not affected by changes in water level. 3Colonized plants in all water level treatments showed an improvement in phosphorus (P) nutrition over noncolonized plants. Colonized grasses of both species gained consistently more P per plant and had greater tissue P concentrations, with the greatest P concentration in the most heavily colonized plants (from the D and D,W treatments). 4The effect of flooding on the mycorrhizal association depended largely on the extent to which the association was already established when the flooding occurred. Flooding reduced the initiation of colonization either directly or indirectly, but once the fungi were established in the roots they were able to maintain and expand with the growing root system. [source] Global trends in senesced-leaf nitrogen and phosphorusGLOBAL ECOLOGY, Issue 5 2009Zhiyou Yuan ABSTRACT Aim, Senesced-leaf litter plays an important role in the functioning of terrestrial ecosystems. While green-leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced-leaf nutrients are not well understood. Location, Global. Methods, Here, bringing together a global dataset of senesced-leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world-wide trends in senesced-leaf N and P and their stoichiometric ratios. Results, Concentration of senesced-leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced-leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life-form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced-leaf N, P, N : P, C : N and C : P with a ranking of senesced-leaf N from high to low: forbs , shrubs , trees > grasses, while the ranking of P was forbs , shrubs , trees < grasses. The climatic trends of senesced-leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions, Globally, senesced-leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem. [source] A global study of relationships between leaf traits, climate and soil measures of nutrient fertilityGLOBAL ECOLOGY, Issue 2 2009Jenny C. Ordoñez ABSTRACT Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade-off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one-way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area-based LNC. Mass-based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade-off between traits associated with growth and resource conservation ,strategies' in relation to soil fertility. Precipitation but not temperature affected this trade-off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate. [source] Genotypic variation of potato for phosphorus efficiency and quantification of phosphorus uptake with respect to root characteristicsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2009Tesfaye Balemi Abstract Potato (Solanum tuberosum L.), an important food crop, generally requires a high amount of phosphate fertilizer for optimum growth and yield. One option to reduce the need of fertilizer is the use of P-efficient genotypes. Two efficient and two inefficient genotypes were investigated for P-efficiency mechanisms. The contribution of root traits to P uptake was quantified using a mechanistic simulation model. For all genotypes, high P supply increased the relative growth rate of shoot, shoot P concentration, and P-uptake rate of roots but decreased root-to-shoot ratio, root-hair length, and P-utilization efficiency. Genotypes CGN 17903 and CIP 384321.3 were clearly superior to genotypes CGN 22367 and CGN 18233 in terms of shoot,dry matter yield and relative shoot-growth rate at low P supply, and therefore can be considered as P-efficient. Phosphorus efficiency of genotype CGN 17903 was related to higher P-utilization efficiency and that of CIP 384321.3 to both higher P-uptake efficiency in terms of root-to-shoot ratio and intermediate P-utilization efficiency. Phosphorus-efficient genotypes exhibited longer root hairs compared to inefficient genotypes at both P levels. However, this did not significantly affect the uptake rate and the extension of the depletion zone around roots. The P inefficiency of CGN 18233 was related to low P-utilization efficiency and that of CGN 22367 to a combination of low P uptake and intermediate P-utilization efficiency. Simulation of P uptake revealed that no other P-mobilization mechanism was involved since predicted uptake approximated observed uptake indicating that the processes involved in P transport and morphological root characterstics affecting P uptake are well described. [source] Comparison of different phosphorus-fertiliser matrices to induce the recovery of phosphorus-deficient maize plantsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2009Javier Erro Abstract BACKGROUND: Previous studies have demonstrated the capacity of a new type of mineral fertiliser, known as rhizosphere-controlled fertiliser (RCF), to supply adequate nutrition to plants while minimising nutrient losses. This fertiliser family is based on the presence a phosphoric matrix composed of metal,humic,phosphates, soluble not in water but in the rhizospheric acids released by plant roots as an expression of nutritional needs, principally citric acid. The aim of this study is to investigate the capacity of the RCF matrix and other phosphorus-containing products to induce the recovery of phosphorus-deficient maize plants. RESULTS: The results showed that RCF-based P fertilisers were able to facilitate plant recovery, measured by the dry root and shoot weights, to the same extent as a water-soluble P fertiliser (monopotassium phosphate). This fact was well correlated to both the variation pattern of citric and trans -aconitic acids in the shoot and roots during the treatment, and P shoot and root contents. Likewise the analysis of the variation of P concentration in the nutrient solution during the treatment indicates that plant recovery is associated with the capacity of the plant to mobilise P from the different fertiliser matrices studied. CONCLUSION: These results confirm the findings obtained in previous in vitro studies and indicate the suitability of RCF strategy for the preparation of mineral fertilisers with a nutrient release pattern more sensitive to plant nutritional needs. Copyright © 2009 Society of Chemical Industry [source] Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activitiesLETTERS IN APPLIED MICROBIOLOGY, Issue 2 2009K.-H. Park Abstract Aims:, To investigate the mechanism of insoluble phosphate (P) solubilization and plant growth-promoting activity by Pseudomonas fluorescens RAF15. Methods and Results:, We investigated the ability of Ps. fluorescens RAF15 to solubilize insoluble P via two possible mechanisms: proton excretion by ammonium assimilation and organic acid production. There were no clear differences in pH and P solubilization between glucose-ammonium and glucose-nitrate media. P solubilization was significantly promoted with glucose compared to fructose. Regardless of nitrogen sources used, Ps. fluorescens RAF15 solubilized little insoluble P with fructose. High performance liquid chromatography analysis showed that Ps. fluorescens RAF15 produced mainly gluconic and tartaric acids with small amounts of 2-ketogluconic, formic and acetic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with soluble P concentration. Ps. fluorescens RAF1 showed the properties related to plant growth promotion: pectinase, protease, lipase, siderophore, hydrogen cyanide, and indoleacetic acid. Conclusion:, This study indicated that the P solubility was directly correlated with the organic acids produced. Significance and Impact of the Study:,Pseudomonas fluorescens RAF15 possessed different traits related to plant growth promotion. Therefore, Ps. fluorescens RAF15 could be a potential candidate for the development of biofertilizer or biocontrol agent. [source] Is plant performance limited by abundance of arbuscular mycorrhizal fungi?NEW PHYTOLOGIST, Issue 1 2005A meta-analysis of studies published between 198 Summary ,,We conducted meta-analyses of 290 published field and glasshouse trials to determine the effects of various agricultural practices on mycorrhizal colonization in nonsterile soils, and the consequence of those effects on yield, biomass, and phosphorus (P) concentration. ,,Mycorrhizal colonization was increased most by inoculation (29% increase), followed by shortened fallow (20%) and reduced soil disturbance (7%). The effect of crop rotation depended on whether the crop was mycorrhizal. Increased colonization resulted in a yield increase in the field of 23% across all management practices. ,,Biomass at harvest and shoot P concentration in early season were increased by inoculation (57 and 33%, respectively) and shortened fallow (55 and 24%). Reduced disturbance increased shoot P concentration by 27%, but biomass was not significantly affected. Biomass was significantly reduced in 2% of all trials in which there was a significant increase in colonization. ,,Irrespective of management practice, an increased mycorrhizal colonization was less likely to increase biomass if either soil P or indigenous inoculum potential was high. [source] Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomatoNEW PHYTOLOGIST, Issue 1 2002Jennifer L. Poulton Summary ,,To further characterize the effects of mycorrhizal infection and soil phosphorus (P) availability on plant fitness, this study examined their effects on the female and male functions, as well as vegetative growth of tomato (Lycopersicon esculentum). ,,Two cultivars of tomato were grown in a glasshouse under three treatment combinations: nonmycorrhizal, low P (NMPO); nonmycorrhizal, high P (NMP3); and mycorrhizal, low P (MPO). ,,Mycorrhizal infection and high soil P conditions improved several vegetative (leaf area, days until first flower and leaf P concentration) and reproductive traits (total flower production, fruit mass, seed number and pollen production per plant, and mean pollen production per flower). In general, mycorrhizal and P responses were greater for reproductive traits than vegetative traits. In one cultivar, these responses were greater for the male function than the female function. ,,Thus, mycorrhizal infection and high soil P conditions enhanced fitness through both the female and male functions. Similar trends were usually observed in the NMP3 and MPO treatments, suggesting that mycorrhizal effects were largely the result of improved P acquisition. [source] Nitrogen and phosphorus availability limit N2 fixation in beanNEW PHYTOLOGIST, Issue 2 2000E. O. LEIDI Availability of nitrogen (N) and phosphorus (P) might significantly affect N2 fixation in legumes. The interaction of N and P was studied in common bean (Phaseolus vulgaris), considering their effects on nodulation and N2 fixation, nitrate reductase activity, and the composition of N compounds in xylem sap. The effect of N on the uptake of P by plants was estimated by analysing rhizospheric pH and P concentration in xylem sap and in plant shoots. Inoculated bean plants were grown in pots containing perlite/vermiculite in two experiments with different amounts of P and N. In a third experiment, bean plants were grown on two soil types or on river sand supplied with different concentrations of N. At harvest, shoot growth, number of nodules and mass, and nitrogenase activity were determined. Xylem sap was collected for the determination of ureides, amino acids, nitrate and phosphate concentration. At low nitrate concentration (1 mM), increasing amounts of P promoted both nodule formation and N2 fixation, measured as ureide content in the xylem sap. However, at high nitrate concentration (10 mM), nodulation and N2 fixation did not improve with increased P supply. Glutamine and aspartate were the main organic N compounds transported in the xylem sap of plants grown in low nitrate, whereas asparagine was the dominant N compound in xylem sap from plants grown in high nitrate. Nitrate reductase activity in roots was higher than in shoots of plants grown with low P and high N. In both soils and in the sand experiment, increased application of N decreased nodule mass and number, nitrogenase activity and xylem ureides but increased the concentration of asparagine in xylem sap. Increasing P nutrition improved symbiotic N2 fixation in bean only at low N concentrations. It did not alleviate the inhibitory effect of high nitrate concentration on N2 fixation. A decrease in plant P uptake was observed, as indicated by a lower concentration of P in the xylem sap and shoots, correlating with the amount of N supplied. Simultaneously with the specific inhibition of N2 fixation, high nitrate concentrations might decrease P availability, thus inhibiting even further the symbiotic association because of the high P requirement for nodulation and N2 fixation. [source] Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogenPLANT BIOLOGY, Issue 1 2010G. Zotz Abstract Insufficient nitrogen (N) and phosphorus (P) frequently limit primary production. Although most nutrient studies on vascular epiphytes have focused on N uptake, circumstantial evidence suggests that P rather than N is the most limiting element for growth in this plant group. We directly tested this by subjecting a total of 162 small individuals of three bromeliad species (Guzmania monostachia, Tillandsia elongata, Werauhia sanguinolenta) to three N and three P levels using a full-factorial experimental design, and determined relative growth rates (RGR) and nutrient acquisition over a period of 11 weeks. Both N and P supply had a significant effect on RGR, but only tissue P concentrations were correlated with growth. Uptake rates of N and P, in contrast, were not correlated with RGR. Increased nutrient supply led to an up to sevenfold increase in tissue P concentration compared to natural conditions, while concentrations of N hardly changed or even decreased. All treatment combinations, even at the lowest experimental P supply, led to decreased N:P ratios. We conclude that P is at least as limiting as N for vegetative function under natural conditions in these epiphytic bromeliads. This conclusion is in line with the general notion of the prevalence of P limitation for the functioning of terrestrial vegetation in the tropics. [source] Physiological changes in white lupin associated with variation in root-zone CO2 concentration and cluster-root P mobilizationPLANT CELL & ENVIRONMENT, Issue 10 2005M. D. CRAMER ABSTRACT White lupin (Lupinus albus L.) mobilizes insoluble soil phosphorus through exudation of organic acids from ,cluster' roots. Organic acid synthesis requires anaplerotic carbon derived from dark CO2 fixation involving PEP-carboxylase. We tested the hypothesis that variation in root-zone CO2 concentration would influence organic acid synthesis and thus P mobilization. Root-zone CO2 concentrations and soil FePO4 concentrations supplied to sand-grown white lupin (cv. Kiev Mutant) were varied. More biomass accumulated in plants supplied with 360 µL L,1 CO2 to the root-zone, compared with those aerated with either 100 or 6000 µL L,1 CO2. Increased FePO4 in the sand resulted in greater leaf P concentrations, but root-zone [CO2] did not influence leaf P concentration. Suppression of cluster-root development in plants supplied with 100 µL L,1 root-zone CO2 was correlated with increased leaf [P]. However, at both 360 and 6000 µL L,1 CO2, cluster-root development was suppressed only at the highest leaf P concentration. Phloem sap [P] was significantly increased by greater [FePO4] in the sand, but was reduced with increased root-zone [CO2], and this may have triggered increased cluster-root initiation. Succinate was the major organic acid (carboxylate) in the phloem sap (minor components included malate, citrate, fumarate) and was increased at greater [FePO4], suggesting that this shoot-derived carboxylate might provide an important source of organic acids for root metabolism. Since cluster root development was inhibited by increasing concentrations of FePO4 in the sand, it is possible that succinate was utilized for the functioning of the root-nodules. [source] Long-term effects of cutting frequency and liming on soil chemical properties, biomass production and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertilizer applicationAPPLIED VEGETATION SCIENCE, Issue 3 2010Michal Hejcman Abstract Question: Is there any effect of cutting frequency and liming on P and K availability in the soil, biomass production and plant species composition after cessation of fertilizer application? Location: Eifel Mountains, SW Germany. Methods: The long-term Grassland Extensification and Nutrient Depletion Experiment was established on a fertilized and mown pasture (Lolio-Cynosuretum) in 1993. Treatments were: (1) two cuts per year without liming, (2) two cuts with liming, (3) four cuts without liming, (4) four cuts with liming and (5) continued intensive mowing as the control. Results: From 1993 to 2006, the plant available P concentration in the soil decreased substantially, whereas K concentration decreased only slightly. Biomass production decreased from 7 to 5 t DM ha,1. These trends were affected by cessation of NPK fertilizer application but not by cutting frequency or liming. In 2007, substantial differences in species composition between the control and the two-cut and four-cut treatments were recorded, whereas liming had no effect. Higher species richness was recorded in cut treatments compared to the control, but no effects of cutting frequency or liming were observed. Ellenberg indicator values indicated that soil nutrients influenced changes in species composition only marginally. Conclusions: The decrease in productivity and available soil P and K in favor of species richness was not achieved to any greater extent by four cuts than by two cuts, or by lime application. Although species richness slightly increased, we conclude that the restoration of low productive grasslands cannot be achieved by cutting management. [source] Effect of supplemental phytase on growth, phosphorus digestibility and bone mineralization of common carp (Cyprinus carpio L)AQUACULTURE RESEARCH, Issue 10 2007Lawrence C Nwanna Abstract The effect of dietary phytase on phosphorus (P) digestibility, growth, bone mineralization and plasma P of common carp (Cyprinus carpio) was investigated. Five diets, D0, DP, PHYT1, PHYT2 and PHYT4, were used. D0 contained no supplement. DP was supplemented with 2.6 g P (Na2HPO4× 2H2O) kg,1. PHYT1, PHYT2 and PHYT4 comprised 1000, 2000 and 4000 U phytase [Ronozyme P (CT)] kg,1. D0, PHYT1, PHYT2, PHYT4 had average of 7.95 g P kg,1; DP contained 10.3 g P kg,1. After 126 days of feeding, fish grew from 115 to 347 g (D0), 583.7 g (DP), 352.6 g (PHYT1), 393.3 g (PHYT2) and 406.4 g (PHYT4). Addition of phytase significantly increased daily feed intake, but only led to a marginal improvement in the weight gain, SGR and FCR of fish fed PHYT2 and PHYT4 compared with fish fed D0. Fish fed DP showed the best (P<0.05) growth performances. Fish fed DP and PHYT4 significantly digested dietary P more than the fish fed D0. Fish fed D0, PHYT1, PHYT2 and PHYT4 retained higher (P<0.05) Zn in their bones than fish fed DP. However, there was no further effect on bone mineralization. Plasma P scarcely improved by between 14% and 26% in fish fed PHYT2 and PHYT4 relative to fish fed D0. P concentration of the faeces was reduced by about 9,22% in fish fed PHYT1 and PHYT4 compared with fish fed D0. [source] Speciation of Arsenic under Dynamic ConditionsENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 6 2008J. Ackermann Abstract In periodically flooded soils, reductive conditions can occur, which favor the dissolution of Fe (hydr)oxides. Fe (hydr)oxides such as goethite are important sorbents for arsenate (AsV), which is the dominant As species in soils under aerobic conditions. Hence, the dissolution of Fe (hydr)oxides under reductive conditions can result in the mobilization and reduction of AsV and, thus, in an increase in the bioavailability of arsenic. The temporal dynamics of these processes and possible re-sorption or precipitation of arsenite (AsIII) formed are poorly understood. Under controlled laboratory conditions, the temporal change in the redox potential and arsenic speciation with time after a simulated flooding event in a quartz-goethite organic matter substrate, spiked with AsV, was examined. During a period of 6,weeks, substrate solutions were sampled weekly using micro-suction cups and analyzed for pH, AsIII and AsV, Fe, Mn and P concentrations. Redox potentials and matric potentials were determined in situ in the substrate-bearing cylinders. The redox potential and the ratio between AsIII and AsV concentrations remained unchanged during the experiment without organic matter application. With organic matter applied, the redox potential decreased and the AsIII concentrations in the substrate solution increased while the total As concentrations in the substrate solution strongly decreased. An addition of goethite (1,g/kg) per se led to a decrease of the total As in the substrate solution (almost 50,%). In respect to the potential As availability for plants, and consequently, the transfer into the food chain, the results are difficult to evaluate. The lower the total As concentrations in the substrate solution, determined with decreasing redox potential, the least plant As uptake will occur. This effect may however be compensated by a shift of the molar P/AsV ratio in the solution in favor of AsV which is expected to increase the As uptake. [source] Sorption of phosphorus in field-moist and air-dried samples from four weakly developed cultivated soil profilesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2007T. PeltovuoriArticle first published online: 9 FEB 200 Summary Sorption of phosphorus (P) in complete soil profiles in northern Europe is not adequately documented. I measured the sorption in genetic horizons of four cultivated soils (Inceptisols, Spodosol) in Finland using both field-moist and air-dried soil samples, fitted modified Freundlich equations (Q = a × Ib , q) to the data, and presented the results in quantity/intensity (Q/I) graphs. Least-squares-estimates for the parameters of the modified Freundlich equation (a, b, q) were found to be imprecise measures of sorption. Values derived from the fitted equations (the amount of P sorbed at the P concentration of 2 mg litre,1 and P buffering capacity at the same concentration) were more precise. Both were correlated with concentrations of oxalate-extractable iron and aluminium. In all soils, there was a distinct difference in sorption between the fertilized Ap horizons and the subsurface horizons, which retained P strongly. Most of the sorption capacity was located in the B horizons at depths between 0.3 and 0.7 m. The results demonstrate the effects of soil-forming processes and human impact on the sorption of P in the soils. Drying the samples prior to the sorption experiments altered the shape of the Q/I graphs. It increased dissolution of P at small P concentrations, sorption at large P concentrations, and the estimates for P buffering capacity. The effects of drying soil samples on the results and the imprecision of the parameters estimated with the modified Freundlich equation should be taken into account when interpreting results of Q/I experiments. [source] Effect of water composition on phosphorus concentration in runoff and water-soluble phosphate in two grassland soilsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2006M. Schärer Summary Many irrigation experiments determine phosphorus (P) losses from soil. Often, these studies cannot be compared, because the irrigation water was not characterized. We used calcium-rich tap water and deionized water to investigate the influence of water composition on P concentrations in induced runoff. We irrigated two grassland sites: one acid and one calcareous. Less P was measured in runoff from tap water irrigation than from deionized water, especially for the acid soil. Batch experiments confirmed the findings of the field experiments. Tap water decreased water-soluble phosphate and increased calcium in the solid phase. This interaction increased with decreasing soil:water ratio. Water of low ionic strength gave results comparable to rainwater. Our findings demonstrate that solution chemistry and the soil:water ratio can strongly influence the availability of P for transport. We recommend that P tests or irrigation experiments should use water resembling that of the system of interest. Irrigation experiments aiming to simulate P losses by surface runoff should be carried out with water having a composition comparable to rainwater. [source] Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation projectFRESHWATER BIOLOGY, Issue 12 2002R. C. Lathrop SUMMARYY 1.,A total of 2.7 × 106 walleye fingerlings and 1.7 × 105 northern pike fingerlings were stocked during 1987,99 in eutrophic Lake Mendota. The objectives of the biomanipulation were to improve sport fishing and to increase piscivory to levels that would reduce planktivore biomass, increase Daphnia grazing and ultimately reduce algal densities in the lake. The combined biomass of the two piscivore species in the lake increased rapidly from < 1 kg ha,1 and stabilised at 4,6 kg ha,1 throughout the evaluation period. 2.,Restrictive harvest regulations (i.e. increase in minimum size limit and reduction in bag limit) were implemented in 1988 to protect the stocked piscivores. Further restrictions were added in 1991 and 1996 for walleye and northern pike, respectively. These restrictions were essential because fishing pressure on both species (especially walleye) increased dramatically during biomanipulation. 3.,Commencing in 1987 with a massive natural die-off of cisco and declining yellow perch populations, total planktivore biomass dropped from about 300,600 kg ha,1 prior to the die-off and the fish stocking, to about 20,40 kg ha,1 in subsequent years. These low planktivore biomasses lasted until a resurgence in the perch population in 1999. 4.,During the period prior to biomanipulation when cisco were very abundant, the dominant Daphnia species was the smaller-bodied D. galeata mendotae, which usually reached a biomass maximum in June and then crashed shortly thereafter. Beginning in 1988, the larger-bodied D. pulicaria dominated, with relatively high biomasses occurring earlier in the spring and lasting well past mid-summer of many years. 5.,In many years dominated by D. pulicaria, Secchi disc readings were greater during the spring and summer months when compared with years dominated by D. galeata mendotae. During the biomanipulation evaluation period, phosphorus (P) levels also changed dramatically thus complicating our analysis. Earlier research on Lake Mendota had shown that Daphnia grazing increased summer Secchi disc readings, but P concentrations linked to agricultural and urban runoff and to climate-controlled internal mixing processes were also important factors affecting summer readings. 6.,The Lake Mendota biomanipulation project has been a success given that high densities of the large-bodied D. pulicaria have continued to dominate for over a decade, and the diversity of fishing opportunities have improved for walleye, northern pike and, more recently, yellow perch. 7.,Massive stocking coupled with very restrictive fishing regulations produced moderate increases in piscivore densities. Larger increases could be realised by more drastic restrictions on sport fishing, but these regulations would be very controversial to anglers. 8.,If the lake's food web remains in a favourable biomanipulation state (i.e. high herbivory), further improvements in water clarity are possible with future reductions in P loadings from a recently initiated non-point pollution abatement programme in the lake's drainage basin. [source] Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequencesFUNCTIONAL ECOLOGY, Issue 2 2009David A. Wardle Summary 1Following major disturbances ecosystem development occurs but in the prolonged absence of disturbance a decline (retrogressive) phase follows in which productivity and nutrient availability diminishes. Although it is recognized that litter quality and decomposition rates decrease as retrogression proceeds, little is known about the extent to which this is driven among- vs. within-species variation across these sequences. 2We selected six long-term chronosequences that each included retrogressive stages, in New Zealand, Hawaii, Sweden, Alaska and Australia. Two involve significant species turnover across the sequence so that different species dominate at different stages, two involve low species turnover so that the same dominant species occur at all stages, and two involve some turnover of species but with certain species persisting throughout most of the sequence. 3For each chronosequence, we collected litter from each dominant plant species at each stage of that sequence. For each litter collection we measured concentrations of N and P, and performed laboratory decomposition bioassays to measure mass loss, N and P loss, and the response of mass loss to mixture with litters of coexisting species. 4We found that litter N and P concentrations often declined with increasing ecosystem age, both among- and within-species. However, the relative importance of among- and within-species effects varied across the six chronosequences. Rates of litter mass, N, and P loss during decomposition sometimes decreased with increasing ecosystem age, but most often at the among-species rather than the within-species level. 5Litter mixing effects often varied across chronosequence stages, but the magnitude and direction of these effects was inconsistent among sequences. Variation in litter mixing effects across chronosequence stages was driven mainly by among- rather than within-species variation. 6Although several recent studies have emphasized the role of within-species variation on ecosystem properties, our results point to among-species variation as a consistently important ecological driver, with within-species variation being important only for some variables and in some instances. As such they highlight that decomposition processes are most likely to be highly responsive to gradients of soil fertility (such as across chronosequences) when significant species turnover occurs across the gradient. [source] Shifts in leaf N : P ratio during resorption reflect soil P in temperate rainforestFUNCTIONAL ECOLOGY, Issue 4 2008Sarah J. Richardson Summary 1Large-scale syntheses of leaf and litter N and P concentrations have demonstrated that leaf and litter N : P ratios both decline with latitude, that litter N : P ratios are generally greater than those of fresh leaves, and that the difference between these two ratios increases towards the tropics. These patterns have been ascribed to either a direct effect of temperature on plant growth rates and leaf-level physiology, or a decline in soil P towards the tropics. We test the hypothesis that global patterns of leaf and litter N : P ratios reflect a soil-P gradient by examining leaf and litter N : P in all species from a temperate rainforest along a soil-P gradient. 2The soil P gradient followed a toposequence of 20 plots. There was > 50-fold variation in soil total P from ridges (23,136 mg kg,1), through faces and terraces (32,744 mg kg,1), to gullies (440,1214 mg kg,1). 3The N : P ratios of leaves and litter both declined as soil total P increased, and the N : P ratio of litter was greater than that of fresh leaves. The difference between litter N : P and fresh leaf N : P declined with increasing soil total P supporting the hypothesis that global patterns of N : P ratios reflect gradients of soil P. 4Compositional turnover with soil P partly contributed to the total plant community leaf and litter nutrient concentration responses. However, consistent within-species responses pointed to a soil-based mechanism for determining responses by the total plant community. 5Comparisons of our litter data to global data sets suggest that the vegetation was well adapted to low soil nutrient concentrations with 37% of litter N and 24% of litter P samples being below published thresholds for highly proficient nutrient resorption. 6The range of leaf N and leaf P concentrations at our site captured a large portion of the range reported in global leaf trait data sets. 7Highly proficient P resorption was responsible for the divergence in leaf and litter N : P ratios on P-poor soils. These results emphasize the significance of proficient nutrient resorption as an advantageous plant trait for nutrient conservation on P-poor soils. [source] Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass speciesFUNCTIONAL ECOLOGY, Issue 6 2000S. P. Miller Abstract 1Two semiaquatic grasses, Panicum hemitomon Schultes and Leersia hexandra Schwartz, were grown for 12 weeks in sterilized soil in experimental mesocosms, with and without the addition of arbuscular mycorrhizal (AM) fungal inoculum (as nonsterilized soil), under the following rooting-zone flood regimes: waterlogged (W), free-draining (D), beginning W and ending D (W,D), and beginning D and ending W (D,W). The purpose of the experiment was to determine whether these controlled water regimes affected both colonization of wetland grasses by AM fungi and the effects of the colonization on various plant parameters. 2Water regime, addition of inoculum, and their interaction were highly significant effects on total and proportion of root length colonized by AM fungi. Trends were very similar for the two grass species. Colonization was less and plants smaller in the W and W,D than in the D and D,W treatments. The viability of mycorrhiza at the end of the experiment, as measured by vital staining techniques, was not affected by changes in water level. 3Colonized plants in all water level treatments showed an improvement in phosphorus (P) nutrition over noncolonized plants. Colonized grasses of both species gained consistently more P per plant and had greater tissue P concentrations, with the greatest P concentration in the most heavily colonized plants (from the D and D,W treatments). 4The effect of flooding on the mycorrhizal association depended largely on the extent to which the association was already established when the flooding occurred. Flooding reduced the initiation of colonization either directly or indirectly, but once the fungi were established in the roots they were able to maintain and expand with the growing root system. [source] Global trends in senesced-leaf nitrogen and phosphorusGLOBAL ECOLOGY, Issue 5 2009Zhiyou Yuan ABSTRACT Aim, Senesced-leaf litter plays an important role in the functioning of terrestrial ecosystems. While green-leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced-leaf nutrients are not well understood. Location, Global. Methods, Here, bringing together a global dataset of senesced-leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world-wide trends in senesced-leaf N and P and their stoichiometric ratios. Results, Concentration of senesced-leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced-leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life-form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced-leaf N, P, N : P, C : N and C : P with a ranking of senesced-leaf N from high to low: forbs , shrubs , trees > grasses, while the ranking of P was forbs , shrubs , trees < grasses. The climatic trends of senesced-leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions, Globally, senesced-leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem. [source] Irreversible Phosphorus Sorption in Septic System Plumes?GROUND WATER, Issue 1 2008W. D. Robertson The mobility of phosphorus (P) in septic system plumes remains a topic of debate because of the considerable reactivity of this constituent. In this study, a septic system plume in Ontario was monitored over a 16-year period with detail that clearly shows the advancing frontal portion of the P plume. This monitoring record provides insight into the extent of secondary P attenuation in the ground water zone beyond that available from previous studies. A P plume 16 m in length developed over the monitoring period with PO4 -P concentrations (3 to 6 mg/L) that approached the concentrations present under the tile bed. Simulations using an analytical model showed that when first-order solute decay was considered to account for the possibility of secondary P attenuation in the ground water zone, field values could only be matched when decay was absent or occurred at an exceedingly slow rate (half-life greater than 30 years). Thus, hypothesized secondary P attenuation mechanisms such as slow recystallization of sorbed P into insoluble metal phosphate minerals, diffusion into microsites, or kinetically slow direct precipitation of P minerals such as hydroxyapatite were inactive in the ground water zone at this site or occurred at rates that were too slow to be observed in the context of the current 16-year study. Desorption tests on sediment samples from below the tile bed indicated a PO4 distribution coefficient (Kd) of 4.8, which implies a P retardation factor of 25, similar to the field apparent value of 37 determined from model calibrations. This example of inactive secondary P attenuation in the ground water zone shows that phosphorus in some ground water plumes can remain mobile and conservative for decades. This has important implications for septic systems located in lakeshore environments when long-term usage scenarios are considered. [source] Absolute serum hormone levels predict the magnitude of change in anterior knee laxity across the menstrual cycleJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2006Sandra J. Shultz Abstract This study aimed to determine whether absolute sex hormone concentrations predict the magnitude of knee joint laxity changes across the menstrual cycle. Twenty-two females (18,30 years, body mass index ,30), who reported normal menstrual cycles for the previous 6 months were tested daily across one complete menstrual cycle for serum levels of estradiol (E,=,pg/mL), progesterone (P,=,ng/mL), and testosterone (T,=,ng/dL), and knee joint laxity (KLax,=,mm displacement at 134N) measured with a standard knee arthrometer. The change in KLax across the cycle (maximum,minimum), and minimum (early follicular) and peak (postovulatory) hormone concentrations were recorded for each subject. A stepwise linear regression determined if the minimum, peak, or absolute change in hormone concentrations would predict the magnitude of change in KLax across the cycle. KLax changed on average 3.2,±,1.1 mm across the menstrual cycle (range, 1.5,5.3 mm). Minimum levels of E (39.9,±,11.8 pg/mL) and P (0.61,±,0.27 ng/mL), coupled with peak concentrations of E (199.6,±,54.9 pg/mL) and T (22.5,±,10.5 ng/dL) explained 57.6% of the change in KLax across the cycle. Greater absolute changes in KLax were observed in response to peak E and T levels when minimum E concentrations were lower and minimum P concentrations were higher in the early follicular phase. The absolute minimum concentrations of E and P in the early follicular phase appear to be important factors in determining the sensitivity of the knee joint's response to changing hormone levels. © 2005 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source] PHOSPHORUS BIOAVAILABILITY MONITORING BY A BIOLUMINESCENT CYANOBACTERIAL SENSOR STRAIN ,JOURNAL OF PHYCOLOGY, Issue 1 2002Osnat Gillor Phosphorus (P) is widely considered to be the main nutrient limiting the productivity of freshwater phytoplankton, but an assessment of its bioavailability in natural samples is highly complex. In an attempt to provide a novel tool for this purpose, the promoter of the alkaline phosphatase gene, phoA, from Synechococcus sp. PCC 7942 was fused to the luxAB luciferase genes of the bioluminescent bacterium Vibrio harveyi. The resulting construct was introduced into a neutral site on the Synechococcus sp. PCC 7942 genome to yield strain APL, which emitted light when inorganic P concentrations fell below 2.3 ,M. Light emission of P-deprived cells decreased rapidly upon inorganic P readdition. The reporter was demonstrated to be a sensitive tool for monitoring the bioavailability of both inorganic and organic P sources. In water samples taken from a natural freshwater environment (Lake Kinneret, Israel), the luminescence measured correlated with total dissolved phosphate concentrations. [source] Spatial variation of soil test phosphorus in a long-term grazed experimental grassland fieldWeijun Fu1, 2JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2010Hubert Tunney Abstract The spatial variation of soil test P (STP) in grassland soils is becoming important because of the use of STP as a basis for policies such as the recently EU-introduced Nitrate Directive. This research investigates the spatial variation of soil P in grazed grassland plots with a long-term (38 y) experiment. A total of 326 soil samples (including 14 samples from an adjacent grass-wood buffer zone) were collected based on a 10 × 10 m2 grid system. The samples were measured for STP and other nutrients. The results were analyzed using conventional statistics, geostatistics, and a geographic information system (GIS). Soil test P concentrations followed a lognormal distribution, with a median of 5.30 mg L,1 and a geometric mean of 5.35 mg L,1. Statistically significant (p < 0.01) positive correlation between STP and pH was found. Spatial clusters and spatial outliers were detected using the local Moran's I index (a local indicator of spatial association) and were mapped using GIS. An obvious low-value spatial-cluster area was observed on the plots that received zero-P fertilizer application from 1968 to 1998 and a large high-value spatial-cluster area was found on the relatively high-P fertilizer application plots (15,kg ha,1 y,1). The local Moran's I index was also effective in detecting spatial outliers, especially at locations close to spatial-cluster areas. To obtain a reliable and stable spatial structure, semivariogram of soil-P data was produced after elimination of spatial outliers. A spherical model with a nugget effect was chosen to fit the experimental semivariogram. The spatial-distribution map of soil P was produced using the kriging interpolation method. The interpolated distribution map was dominated by medium STP values, ranging from 3 mg to 8 mg L,1. An evidently low-P-value area was present in the upper side of the study area, as zero or short-term P fertilizer was applied on the plots. Meanwhile, high-P-value area was located mainly on the plots receiving 15,kg P ha,1 y,1 (for 38 y) as these plots accumulated excess P after a long-term P-fertilizer spreading. The high- or low-value patterns were in line with the spatial clusters. Geostatistics, combined with GIS and the local spatial autocorrelation index, provides a useful tool for analyzing the spatial variation in soil nutrients. [source] Impact of organic and inorganic fertilizers on yield, taste, and nutritional quality of tomatoesJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2006Anuschka Heeb Abstract In a greenhouse experiment, tomato plants were grown in sand culture to test whether different fertilization regimes (mineral or organic fertilizers) at low (500 mg N plant,1 week,1) and high (750 mg N plant,1 week,1) nitrogen levels affected yield, nutritional quality, and taste of the fruits. In the mineral-fertilizer treatments, nitrate- or ammonium-dominated nutrient solutions were used. Organic fertilizer was supplied as fresh cut grass-clover mulch (a total of 2.4,kg and 3.6,kg were given per plant at low and high N level, respectively) without (orgN) and with additional sulfur fertilization (orgN+S). Yields of red tomatoes from the organically fertilized plants were significantly lower (1.3,1.8,kg plant,1) than yields from plants that received mineral fertilizer (2.2,2.8,kg plant,1). At the final harvest, yields of green tomatoes in the organic treatment with extra sulfur were similar (1.1,1.2,kg plant,1) to the NO -dominated treatments at both nutrient levels and the NH -dominated treatment at high nutrient level. Organic fertilizers released nutrients more slowly than mineral fertilizers, resulting in decreased S and P concentrations in the leaves, which limited growth and yield in the orgN treatments. Analysis of tomato fruits and plants as well as taste-test results gave no conclusive answer on the relationship between sugar or acid contents in the fruits, macronutrient content of plant leaves and fruits, and perceived taste. Sugar contents were higher in the fruits given mineral fertilizer, whereas acid contents were higher in the fruits given organic fertilizer. Preference in taste was given to the tomatoes from plants fertilized with the nitrate-dominated nutrient solution and to those given organic fertilizer with extra sulfur. Thus, a reduction in growth, which was expected to lead to a higher concentration of compounds like sugars and acids, did not result in better taste. Overall, it can be concluded that an appropriate nutrient supply is crucial to reach high yields and good taste. [source] Impact of Dredging on Phosphorus Transport in Agricultural Drainage Ditches of the Atlantic Coastal Plain,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2008Francirose Shigaki Abstract:, Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic Coastal Plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches. Sediments from two drainage ditches that had been monitored for seven years and had similar characteristics (flow, P loadings, sediment properties) were sampled (0-5 cm) after one of the ditches had been dredged, which removed fine textured sediments (clay = 41%) with high organic matter content (85 g/kg) and exposed coarse textured sediments (clay = 15%) with low organic matter content (2.2 g/kg). Sediments were subjected to a three-phase experiment (equilibrium, uptake, and release) in recirculating 10-m-long, 0.2-m-wide, and 5-cm-deep flumes to evaluate their role as sources and sinks of P. Under conditions of low initial P concentrations in flume water, sediments from the dredged ditch released 13 times less P to the water than did sediments from the ditch that had not been dredged, equivalent to 24 mg dissolved P. However, the sediments from the dredged ditch removed 19% less P (76 mg) from the flume water when it was spiked with dissolved P to approximate long-term runoff concentrations. Irradiation of sediments to destroy microorganisms revealed that biological processes accounted for up to 30% of P uptake in the coarse textured sediments of the dredged ditch and 18% in the fine textured sediments of the undredged ditch. Results indicate that dredging of coastal plain drainage ditches can potentially impact the P buffering capacity of ditches draining agricultural soils with a high potential for P runoff. [source] |