Ovarian Cancer Tissues (ovarian + cancer_tissue)

Distribution by Scientific Domains


Selected Abstracts


Fluorescence staining of human ovarian cancer tissue following application of 5-aminolevulinic acid: Fluorescence microscopy studies

LASERS IN SURGERY AND MEDICINE, Issue 5 2006
Martin C. Löning
Abstract Background and Objectives Application of 5-aminolevulinic acid (ALA) for fluorescence-guided second-look laparoscopy has been shown to be a promising new procedure in the early diagnosis of ovarian carcinoma metastases. However, for assessing the reliability of this method, information on the microscopic distribution of protoporphyrin IX (PP IX) in the tissue is needed. Additionally, the selectivity of PP IX uptake is essential for a potential photodynamic therapy (PDT) of ovarian cancer metastases. Study Design/Materials and Methods Thirty-six patients with epithelial ovarian cancer and two patients suffering from fallopian tube carcinoma underwent a laparoscopic second-look procedure 5 hours after the application of ALA. In 17 patients 36 fluorescence-guided biopsies were taken from fluorescing and non-fluorescing tissues for further evaluation. Fluorescence microscopy and digital image processing were utilized to determine the presence of PP IX fluorescence. Results A specificity of 88% and a sensitivity of 100% with a negative predictive value of 100% and a positive predictive value of 91% were calculated for PP IX fluorescence on a microscopic level as marker for ovarian cancer metastases. Conclusions On a microscopic scale, ALA-induced PP IX fluorescence is confined to ovarian cancer tumor tissue sparing stromal tissues. Lasers Surg. Med. © 2006 Wiley-Liss, Inc. [source]


Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer

CANCER, Issue 8 2008
Aurelia Noske MD
Abstract BACKGROUND The human nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 (CRM1) mediates the nuclear export of proteins and messenger RNAs and, thus, is an important regulator of subcellular distribution of key molecules. Whereas cell-biologic studies have suggested a fundamental role for CRM1 in the regulation of mitosis, the expression of this protein in human tumor tissue has not been investigated to date. METHODS In this study, the expression of CRM1 was analyzed in a cohort of 88 ovarian tumors and 12 ovarian cell lines for the first time to the authors' knowledge. RESULTS Immunohistochemistry revealed increased nuclear (52.7%) and cytoplasmic (56.8%) expression of CRM1 in 74 carcinomas compared with the expression revealed in borderline tumors and benign lesions. Similarly, CRM1 expression was increased in ovarian cancer cell lines compared with human ovarian surface epithelial cells. Cytoplasmic CRM1 expression was related significantly to advanced tumor stage (P = .043), poorly differentiated carcinomas (P = .011), and higher mitotic rate (P = .008). Nuclear CRM1 was associated significantly with cyclooxygenase-2 (COX-2) expression (P = .002) and poor overall survival (P = .01). Because it was demonstrated previously that blocking of CRM1 by leptomycin B (LMB) contributes to the inhibition of nuclear export, the authors used a set of mechanistic assays to study the effects of CRM1 inhibition in cancer cells. Treatment of OVCAR-3 cells with LMB revealed a significant reduction of cell proliferation and increased apoptosis as well as suppressed interleukin-1,-induced COX-2 expression. CONCLUSIONS The current results indicated that CRM1 is expressed in a subpopulation of ovarian carcinomas with aggressive behavior and is related to poor patient outcome. A correlation also was demonstrated between CRM1 and COX-2 expression in ovarian cancer tissue. Furthermore, the treatment of ovarian cancer cells with LMB revealed a reduction in COX-2 expression. Therefore, the authors suggest that CRM1 may be an interesting biomarker for the assessment of patient prognosis and a molecular target for anticancer treatment. Cancer 2008. © 2008 American Cancer Society. [source]


Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2007
Feng Wang-Johanning
Abstract Individual classes of human endogenous retrovirus (HERV) genes and proteins are expressed in cancer, but expression of more than one type of HERV is rare. We report here the expression of multiple HERV genes and proteins in ovarian cell lines and tissues. Expression of HERV-K env mRNA was greater in ovarian epithelial tumors than in normal ovarian tissues (N = 254). The expression of this protein on the surface and in the cytoplasm of ovarian cancer cells was confirmed using anti-HERV-K specific antibody by flow cytometric analysis. The frequency of expression of HERV-K env protein in multitissue microarrays (N = 641) was determined by immunohistochemistry and a significant correlation with tumor histotype was found. A significantly increased expression of HERV-K was observed in tumors with low malignant potential and low grade, relative to expression in normal ovarian tissues. The increase in expression of HERV-K env protein took place in a stepwise fashion in serous papillary adenocarcinoma. Interestingly, we found that other classes of HERV env mRNAs, including ERV3 and HERV-E, are expressed in the same ovarian cancer tissues that expressed HERV-K. Furthermore, anti-HERV antibodies including anti-ERV3 (30%), anti-HERV-E (40%) and anti-HERV-K (55%) were detected in patients with ovarian cancer, but not in normal female controls. HERV env proteins are frequently transcribed and translated in ovarian epithelial tumors, and multiple HERV families are detectable in ovarian cancer. HERV env proteins, and especially those expressed on the cell surface, may serve as novel tumor targets for detection, diagnosis and immunotherapy of ovarian cancer. © 2006 Wiley-Liss, Inc. [source]


Expression and promoter methylation status of mismatch repair gene hMLH1 and hMSH2 in epithelial ovarian cancer

AUSTRALIAN AND NEW ZEALAND JOURNAL OF OBSTETRICS AND GYNAECOLOGY, Issue 5 2008
Hui ZHANG
Objective: The purpose of this study is to determine the relationship between methylation and loss of hMLH1 and hMSH2 expression in ovarian cancer. Methods: We examined the methylation status of hMLH1 and hMSH2 promoter region by methylation-specific polymerase chain reaction (MSP) in 56 primary ovarian cancer tissues and 20 normal ovarian tissues, the relationship between the methylation status of these two genes and clinicopathological characteristics were analysed. We then treated SKOV3 and 3AO ovarian cancer cell lines with the demethylating agent 5-aza-2,-deoxycytidine (5-aza-dc). The hMLH1 and hMSH2 methylation was further assessed by MSP, and their mRNA expression was compared by reverse transcription polymerase chain reaction (RT-PCR) before and after 5-aza-dc treatment in these two cell lines. Results: The methylation frequency of hMLH1 and hMSH2 was 30.4% (17 of 56) and 51.7% (29 of 56) in ovarian cancers, respectively, while no methylation was detected in normal ovarian tissues (P = 0.015). There is a significant correlation between hMLH1 promoter hypermethylation and histological grade (P = 0.028) as well as lymphatic metastasis (P = 0.003). Methylation of hMSH2 correlated with histological grade (P = 0.035) and lymphatic metastasis (P = 0.015). Besides, the methylation rates of hMSH2 were significantly higher in endometrioid adenocarcinoma tissues than in other pathological types of ovarian cancer. After 5-aza-dc treatment, the expression of hMLH1 and hMSH2 was reversed in two cell lines. Conclusion: Our results indicate that promoter hypermethylation is an important mechanism for loss of hMLH1 and hMSH2 expression in human ovarian cancer and may be a potential prognostic factor in ovarian cancer. [source]


Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis

CANCER SCIENCE, Issue 8 2009
Kosuke Yoshihara
To elucidate the mechanisms of rapid progression of serous ovarian cancer, gene expression profiles from 43 ovarian cancer tissues comprising eight early stage and 35 advanced stage tissues were carried out using oligonucleotide microarrays of 18 716 genes. By non-negative matrix factorization analysis using 178 genes, which were extracted as stage-specific genes, 35 advanced stage cases were classified into two subclasses with superior (n = 17) and poor (n = 18) outcome evaluated by progression-free survival (log rank test, P = 0.03). Of the 178 stage-specific genes, 112 genes were identified as showing different expression between the two subclasses. Of the 48 genes selected for biological function by gene ontology analysis or Ingenuity Pathway Analysis, five genes (ZEB2, CDH1, LTBP2, COL16A1, and ACTA2) were extracted as candidates for prognostic factors associated with progression-free survival. The relationship between high ZEB2 or low CDH1 expression and shorter progression-free survival was validated by real-time RT-PCR experiments of 37 independent advanced stage cancer samples. ZEB2 expression was negatively correlated with CDH1 expression in advanced stage samples, whereas ZEB2 knockdown in ovarian adenocarcinoma SKOV3 cells resulted in an increase in CDH1 expression. Multivariate analysis showed that high ZEB2 expression was independently associated with poor prognosis. Furthermore, the prognostic effect of E-cadherin encoded by CDH1 was verified using immunohistochemical analysis of an independent advanced stage cancer samples set (n = 74). These findings suggest that the expression of epithelial,mesenchymal transition-related genes such as ZEB2 and CDH1 may play important roles in the invasion process of advanced stage serous ovarian cancer. (Cancer Sci 2009) [source]