Home About us Contact | |||
Ovarian Cancer Cells (ovarian + cancer_cell)
Kinds of Ovarian Cancer Cells Terms modified by Ovarian Cancer Cells Selected AbstractsCompact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotypeINTERNATIONAL JOURNAL OF CANCER, Issue 9 2009Katharine L. Sodek Abstract Ovarian cancer cells are present in malignant ascites both as individual cells and as multicellular spheroid aggregates. Although spheroid formation affords protection of cancer cells against some chemotherapeutic agents, it has not been established whether a relationship exists between invasive behavior and predisposition to spheroid formation. Aspects of spheroid formation, including cell-matrix adhesion, remodeling and contractility are characteristic myofibroblast-like behaviors associated with fibrosis that contribute to tumor growth and dissemination. We explored the possibility that cell behaviors that promote spheroid formation also facilitate invasion. Our analysis of 6 human ovarian cancer cell lines indicated that ovarian cancer cells possessing myofibroblast-like properties formed compact spheroids and invaded 3D matrices. These cells readily contracted collagen I gels, possessed a spindle-like morphology, and had elevated expression of genes associated with the TGF,-mediated fibrotic response and/or ,1 integrin function, including fibronectin (FN), connective tissue growth factor (CTGF/CCN2), lysyl oxidase (LOX1), tissue transglutaminase 2 (TGM2) and urinary plasminogen activator receptor (uPAR). Whereas cell aggregation was induced by TGF,, and by ,1-integrin overexpression and activation, these treatments did not stimulate the contractile activity required for spheroid compaction. The positive relationship found between compact spheroid formation and invasive behavior implies a preferential survival of an invasive subpopulation of ovarian cancer cells, as cells in spheroids are more resistant to several chemotherapeutics. Preventing the formation of ovarian cancer spheroids may represent a novel strategy to improve the efficacy of existing therapeutics. © 2008 Wiley-Liss, Inc. [source] Therapeutic strategy using phenotypic modulation of cancer cells by differentiation-inducing agentsCANCER SCIENCE, Issue 11 2007Yoshio Honma A low concentration of differentiation inducers greatly enhances the in vitro and in vivo antiproliferative effects of interferon (IFN), in several human cancer cells. Among the differentiation inducers tested, the sensitivity of cancer cells to IFN, was most strongly affected by cotylenin A. Cotylenin A, which is a novel fusicoccane diterpene glycoside with a complex sugar moiety, affected the differentiation of leukemia cells that were freshly isolated from acute myelogenous leukemia patients in primary culture. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor DR5 were early genes induced by the combination of cotylenin A and IFN, in carcinoma cells. Neutralizing antibody to TRAIL inhibited apoptosis, suggesting that cotylenin A and IFN, cooperatively induced apoptosis through the TRAIL signaling system. Combined treatment preferentially induced apoptosis in human lung cancer cells while sparing normal lung epithelial cells. In an analysis of various cancer cell lines, ovarian cancer cells were highly sensitive to combined treatment with cotylenin A and IFN, in terms of the inhibition of cell growth. This treatment was also effective toward ovarian cancer cells that were refractory to cisplatin, and significantly inhibited the growth of ovarian cancer cells as xenografts without apparent adverse effects. Ovarian cancer cells from patients were also sensitive to the combined treatment in primary cultures. Combined treatment with cotylenin A and IFN, may have therapeutic value in treating human cancers including ovarian cancer. (Cancer Sci 2007; 98: 1643,1651) [source] Influence of the Diketonato Ligand on the Cytotoxicities of [Ru(,6 - p -cymene)(R2acac)(PTA)]+ Complexes (PTA = 1,3,5-triaza-7-phosphaadamantane)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2008Carsten A. Vock Abstract A series of compounds of general formula [Ru(,6 - p -cymene)(R2acac)(PTA)][X] (R2acac = Me2acac, tBu2acac, Ph2acac, Me2acac-Cl; PTA = 1,3,5-triaza-7-phosphaadamantane; X = BPh4, BF4), and the precursor to the Me2acac-Cl derivative [Ru(,6 - p -cymene)(Me2acac-Cl)Cl], have been prepared and characterised spectroscopically. Five of the compounds have also been characterised in the solid state by X-ray crystallography. The tetrafluoroborate salts are water-soluble, quite resistant to hydrolysis, and have been evaluated for cytotoxicity against A549 lung carcinoma and A2780 human ovarian cancer cells. The compounds are cytotoxic towards the latter cell line, and relative activities are discussed in terms of hydrolysis (less important) and lipophilicity, which appears to exert the dominating influence. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Design of Multiresponsive Hydrogel Particles and AssembliesADVANCED FUNCTIONAL MATERIALS, Issue 11 2010Grant R. Hendrickson Abstract In the realm of soft nanotechnology, hydrogel micro- and nanoparticles represent a versatile class of responsive materials. Over the last decade, our group has investigated the synthesis and physicochemical properties of a variety of synthetic hydrogel particles. From these efforts, several particle types have emerged with potentially enabling features for biological applications, including nanogels for targeted drug delivery, microlenses for biosensing, and coatings for biomedical devices. For example, core/shell nanogels have been used to encapsulate and deliver small interfering RNA to ovarian cancer cells; nanogels used in this fashion may improve therapeutic outcomes for a variety of macromolecular therapeutics. Microgels arranged as multilayers on implantable biomaterials greatly minimize the host inflammatory response to the material. Furthermore, the triggered release of drugs (i.e., insulin) has been demonstrated from similar assemblies. The goal of this feature article is to highlight developments in the design of responsive microgels and nanogels in the context of our recent efforts and in relation to the community that has grown up around this fascinating class of materials. [source] Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cellsGENES, CHROMOSOMES AND CANCER, Issue 12 2007Timon P. H. Buys The multidrug resistant (MDR) phenotype is often attributed to the activity of ATP-binding cassette (ABC) transporters such as P-glycoprotein (ABCB1). Previous work has suggested that modulation of MDR may not necessarily be a single gene trait. To identify factors that contribute to the emergence of MDR, we undertook integrative genomics analysis of the ovarian carcinoma cell line SKOV3 and a series of MDR derivatives of this line (SKVCRs). As resistance increased, comparative analysis of gene expression showed conspicuous activation of a network of genes in addition to ABCB1. Functional annotation and pathway analysis revealed that many of these genes were associated with the extracellular matrix and had previously been implicated in tumor invasion and cell proliferation. Further investigation by whole genome tiling-path array CGH suggested that changes in gene dosage were key to the activation of several of these overexpressed genes. Remarkably, alignment of whole genome profiles for SKVCR lines revealed the emergence and decline of specific segmental DNA alterations. The most prominent alteration was a novel amplicon residing at 16p13 that encompassed the ABC transporter genes ABCC1 and ABCC6. Loss of this amplicon in highly resistant SKVCR lines coincided with the emergence of a different amplicon at 7q21.12, which harbors ABCB1. Integrative analysis suggests that multiple genes are activated during escalation of drug resistance, including a succession of ABC transporter genes and genes that may act synergistically with ABCB1. These results suggest that evolution of the MDR phenotype is a dynamic, multi-genic process in the genomes of cancer cells. © 2007 Wiley-Liss, Inc. [source] Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherinINTERNATIONAL JOURNAL OF CANCER, Issue 6 2010Akiko Hayashi Abstract Histone acetylation/deacetylation controls chromatin activity and subsequent gene transcription. Recent studies demonstrated the activation of histone deacetylases (HDACs) in various human malignancies; however, the expression and function of HDACs in ovarian tumors are not fully understood. In this study, we examined the immunohistochemical expression of HDAC1, HDAC2 and HDAC3 using tissues obtained from 115 cases of ovarian tumors and compared it with that of Ki-67 (a growth marker), p21, and E-cadherin and clinicopathological parameters. In addition, we analyzed the effect of specific siRNA for HDAC1, HDAC2 and HDAC3 on the expression of cell cycle-related molecules and E-cadherin to clarify the functional difference among the 3 HDACs. The results indicated that the immunohistochemical expression of nuclear HDAC1, HDAC2 and HDAC3 proteins increased stepwise in benign, borderline and malignant tumors. The expression of HDAC1 and HDAC2 was correlated with Ki-67 expression and that of HDAC3 was inversely correlated with E-cadherin expression. Among the HDACs examined, only HDAC1 was associated with a poor outcome, when overexpressed. Treatment with HDAC inhibitors suppressed the proliferation of ovarian cancer cells in association with apoptosis. A specific siRNA for HDAC1 significantly reduced the proliferation of ovarian carcinoma cells via downregulation of cyclin A expression, but siRNA for HDAC3 reduced the cell migration with elevated E-cadherin expression. Our results suggested that HDAC1 plays an important role in the proliferation of ovarian cancer cells, whereas HDAC3 functions in cell adhesion and migration. Therefore, specific therapeutic approaches should be considered according to the HDAC subtypes. [source] Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotypeINTERNATIONAL JOURNAL OF CANCER, Issue 9 2009Katharine L. Sodek Abstract Ovarian cancer cells are present in malignant ascites both as individual cells and as multicellular spheroid aggregates. Although spheroid formation affords protection of cancer cells against some chemotherapeutic agents, it has not been established whether a relationship exists between invasive behavior and predisposition to spheroid formation. Aspects of spheroid formation, including cell-matrix adhesion, remodeling and contractility are characteristic myofibroblast-like behaviors associated with fibrosis that contribute to tumor growth and dissemination. We explored the possibility that cell behaviors that promote spheroid formation also facilitate invasion. Our analysis of 6 human ovarian cancer cell lines indicated that ovarian cancer cells possessing myofibroblast-like properties formed compact spheroids and invaded 3D matrices. These cells readily contracted collagen I gels, possessed a spindle-like morphology, and had elevated expression of genes associated with the TGF,-mediated fibrotic response and/or ,1 integrin function, including fibronectin (FN), connective tissue growth factor (CTGF/CCN2), lysyl oxidase (LOX1), tissue transglutaminase 2 (TGM2) and urinary plasminogen activator receptor (uPAR). Whereas cell aggregation was induced by TGF,, and by ,1-integrin overexpression and activation, these treatments did not stimulate the contractile activity required for spheroid compaction. The positive relationship found between compact spheroid formation and invasive behavior implies a preferential survival of an invasive subpopulation of ovarian cancer cells, as cells in spheroids are more resistant to several chemotherapeutics. Preventing the formation of ovarian cancer spheroids may represent a novel strategy to improve the efficacy of existing therapeutics. © 2008 Wiley-Liss, Inc. [source] Chromosomes 6 and 18 induce neoplastic suppression in epithelial ovarian cancer cells,INTERNATIONAL JOURNAL OF CANCER, Issue 5 2009Dimitra Dafou Abstract Metaphase comparative genomic hybridisation (CGH) studies indicate that chromosomes 4, 5, 6, 13, 14, 15 and 18 are frequently deleted in primary ovarian cancers (OCs). Therefore we used microcell-mediated chromosome transfer (MMCT) to establish the functional effects of transferring normal copies of these chromosomes into 2 epithelial OC cell lines (TOV112D and TOV21G). The in vitro neoplastic phenotype (measured as anchorage dependent and independent growth and invasion) was compared between recipient OC cell lines and multiple MMCT hybrids. Chromosomes 6 and 18 showed strong evidence of functional, neoplastic suppression for multiple hybrids in both cell lines. We also found evidence in 1 cancer cell line suggesting that chromosomes 4, 13 and 14 may also cause functional suppression. Array CGH and microsatellite analyses were used to characterise the extent of genomic transfer in chromosome 6 and 18 hybrids. A 36 MB deletion on chromosome 6 in 2 hybrids from 1 cell line mapped the candidate region proximal to 6q15 and distal to 6q22.2; and an ,10 MB candidate region spanning the centromere on chromosome 18 was identified in 2 hybrids from the other cell line. These data support reported functional effects of chromosome 6 in OC cell lines; but to our knowledge, this is the first time that functional suppression for chromosome 18 has been reported. This suggests that these chromosomes may harbour tumour suppressor-"like" genes. The future identification of these genes may have a significant impact on the understanding and treatment of the disease and the identification of novel therapeutic targets. © 2008 Wiley-Liss, Inc. [source] Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinibINTERNATIONAL JOURNAL OF CANCER, Issue 12 2008Tiziana Servidei Abstract Deregulated signaling through the epidermal growth factor receptor (EGFR) is involved in chemoresistance. To identify the molecular determinants of sensitivity to the EGFR inhibitor gefitinib (Iressa, ZD1839) in chemoresistance, we compared the response of matched chemosensitive and chemoresistant glioma and ovarian cancer cell lines. We found that chemoresistant cell lines were 2- to 3-fold more sensitive to gefitinib growth-inhibitory effects, because of decreased proliferation rather than survival. Sensitivity to gefitinib correlated with overexpression and constitutive phosphorylation of HER2 and HER3, but not EGFR, altered HER ligand expression, and enhanced activation of EGF-triggered EGFR pathway. No activating mutations were found in EGFR. Gefitinib fully inhibited EGF-induced and constitutive Akt activation only in chemoresistant cells. In parallel, gefitinib downregulated constitutively phosphorylated HER2 and HER3, and activated GSK3, with a concomitant degradation of cyclin D1. Ectopically overexpressed HER2 on its own was insufficient to sensitize chemonaive cells to gefitinib. pHER3 coimmunoprecipitated with p85-PI3K in chemoresistant cells and gefitinib dissociated these complexes. siRNA-mediated inhibition of HER3 decreased constitutive activation of Akt and sensitivity to gefitinib in chemoresistant cells. Our study indicates that in chemoresistant cells gefitinib inhibits both an enhanced EGF-triggered pathway and a constitutive HER3-mediated Akt activation, indicating that inhibition of HER3 together with that of EGFR could be relevant in chemorefractory tumors. Furthermore, in combination experiments gefitinib enhanced the effects of coadministered drugs more in chemoresistant than chemosensitive ovarian cancer cells. Combined treatment might be therapeutically beneficial in chemoresistant tumors from ovary and likely from other tissues. © 2008 Wiley-Liss, Inc. [source] Lysophosphatidic acid induces ovarian cancer cell dispersal by activating Fyn kinase associated with p120-cateninINTERNATIONAL JOURNAL OF CANCER, Issue 4 2008Ruby Yun-Ju Huang Abstract Lysophosphatidic acid (LPA), known as the "ovarian cancer activating factor," is a natural phospholipid involved in important biological functions, such as cell proliferation, wound healing and neurite retraction. LPA causes colony dispersal in various carcinoma cell lines by inducing morphological changes, including membrane ruffling, lamellipodia formation, cell,cell dissociation and single cell migration. However, its effects on cell,cell dissociation and cell,cell adhesion of ovarian cancer cells have not been studied. In our study, we showed that LPA induced sequential events of intercellular junction dispersal and "half-junction" formation in ovarian cancer SKOV3 cells and that Src-family kinases were involved in both processes, since the effects were abolished by the selective tyrosine kinase inhibitor PP2. LPA induced rapid and transient activation of Src family kinases, which were recruited to cell,cell junctions by increasing the association with the adherens junction protein p120-catenin. We identified the Src family kinase, Fyn, as the key component associated with p120-catenin after LPA stimulation in SKOV3 cells. Our study provides evidence that LPA induces junction dispersal in ovarian cancer SKOV3 cells by activating the Src family kinase Fyn and increasing its association with p120-catenin at the cell,cell junction. © 2008 Wiley-Liss, Inc. [source] Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancerINTERNATIONAL JOURNAL OF CANCER, Issue 1 2007Feng Wang-Johanning Abstract Individual classes of human endogenous retrovirus (HERV) genes and proteins are expressed in cancer, but expression of more than one type of HERV is rare. We report here the expression of multiple HERV genes and proteins in ovarian cell lines and tissues. Expression of HERV-K env mRNA was greater in ovarian epithelial tumors than in normal ovarian tissues (N = 254). The expression of this protein on the surface and in the cytoplasm of ovarian cancer cells was confirmed using anti-HERV-K specific antibody by flow cytometric analysis. The frequency of expression of HERV-K env protein in multitissue microarrays (N = 641) was determined by immunohistochemistry and a significant correlation with tumor histotype was found. A significantly increased expression of HERV-K was observed in tumors with low malignant potential and low grade, relative to expression in normal ovarian tissues. The increase in expression of HERV-K env protein took place in a stepwise fashion in serous papillary adenocarcinoma. Interestingly, we found that other classes of HERV env mRNAs, including ERV3 and HERV-E, are expressed in the same ovarian cancer tissues that expressed HERV-K. Furthermore, anti-HERV antibodies including anti-ERV3 (30%), anti-HERV-E (40%) and anti-HERV-K (55%) were detected in patients with ovarian cancer, but not in normal female controls. HERV env proteins are frequently transcribed and translated in ovarian epithelial tumors, and multiple HERV families are detectable in ovarian cancer. HERV env proteins, and especially those expressed on the cell surface, may serve as novel tumor targets for detection, diagnosis and immunotherapy of ovarian cancer. © 2006 Wiley-Liss, Inc. [source] Statins, stem cells, and cancerJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2009Kalamegam Gauthaman Abstract The statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c-MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid-lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975,983, 2009. © 2009 Wiley-Liss, Inc. [source] Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Mi Jeong Lee Abstract Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA1, but not LPA2, with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium. J. Cell. Biochem. 104: 499,510, 2008. © 2007 Wiley-Liss, Inc. [source] Transforming growth factor-,1-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004Kiyoshi Wakahara Abstract The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-,1 (TGF-,1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-,1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-,1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-,1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-,1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-,1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-,1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-,1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pr treated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-,1. In conclusion, TGF-,1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system. © 2004 Wiley-Liss, Inc. [source] INDIVIDUAL AND COMBINED CYTOTOXIC EFFECTS OF THE MAJOR FOUR AFLATOXINS IN DIFFERENT IN VITRO STABILIZED SYSTEMSJOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2010CORNELIA BRAICU ABSTRACT The present study aims to investigate the cytotoxic effect of the major aflatoxins (B1, B2, G2 and G2) and also aflatoxin combination, using a simple, rapid and cheap cytotoxicity test like MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay in three in vitro models (human umbilical vein endothelial cells [HUVEC], human lung fibroblasts [HFL] and A2780 cell line) and to extrapolate the data to in vivo situation using a prediction model. A difference in cell sensitivity has been observed for B1 and B1 + B2, in the following order A2789 > HFL > HUVEC, while for B2, G1, G2, Mix (B1 + B2 + G1 + G2) the order was HFL > A2789 > HUVEC when comparing the IC50 (half maximal inhibitory concentration) values. We confirm that in vitro cytotoxicity test MTT assay is able to predict in vivo toxicity, at least for aflatoxins using the prediction model. The values of LD50 (lethal dose 50%) calculated from experiments are different for each cell line. This fact may indicate that some species are more resistant than other and target organs are not necessarily those predicted, because the A2780 ovarian cancer cells seem to be more sensitive to B1 than cells of endothelial or fibroblasts origin. PRACTICAL APPLICATIONS This study is in concordance with the international tendency that refined the current techniques to lessen pain or distress, to reduce the number of animals necessary for a particular test or to replace animals with non-whole-animal models, such as in vitro cell cultures. The practical application of such methodologies may help solve the economic problem related to very expensive in vivo toxicology studies and implement preventive methods based on the calculated data and known mechanism of action of individual or combined toxins easily studied in vitro. The nature of coexistence of many types of mycotoxins in complex environmental samples, such as food and water, has been reported worldwide. How these mycotoxins might affect human health in combination is largely unknown. This study had, as a goal, to test the toxicity of the four aflatoxins and aflatoxin combination on human cells. Due to the lack of aflatoxins mixture data regarding the human cytotoxicity, the aim of this study was to specify, evaluate and predict the combined effects of mycotoxin mixtures. [source] Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling,MOLECULAR CARCINOGENESIS, Issue 1 2010Jane L. Watson Abstract New cytotoxic agents are urgently needed for the treatment of advanced ovarian cancer because of the poor long-term response of this disease to conventional chemotherapy. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity; however, the mechanism of curcumin-induced cytotoxicity in ovarian cancer cells remains a mystery. In this study we show that curcumin exhibited time- and dose-dependent cytotoxicity against monolayer cultures of ovarian carcinoma cell lines with differing p53 status (wild-type p53: HEY, OVCA429; mutant p53: OCC1; null p53: SKOV3). In addition, p53 knockdown or p53 inhibition did not diminish curcumin killing of HEY cells, confirming p53-independent cytotoxicity. Curcumin also killed OVCA429, and SKOV3 cells grown as multicellular spheroids. Nuclear condensation and fragmentation, as well as DNA fragmentation and poly (ADP-ribose) polymerase-1 cleavage in curcumin-treated HEY cells, indicated cell death by apoptosis. Procaspase-3, procaspase-8, and procaspase-9 cleavage, in addition to cytochrome c release and Bid cleavage into truncated Bid, revealed that curcumin activated both the extrinsic and intrinsic pathways of apoptosis. Bax expression was unchanged but Bcl-2, survivin, phosphorylated Akt (on serine 473), and total Akt were downregulated in curcumin-treated HEY cells. Curcumin also activated p38 mitogen-activated protein kinase (MAPK) without altering extracellular signal-regulated kinase 1/2 activity. We conclude that p53-independent curcumin-induced apoptosis in ovarian carcinoma cells involves p38 MAPK activation, ablation of prosurvival Akt signaling, and reduced expression of the antiapoptotic proteins Bcl-2 and survivin. These data provide a mechanistic rationale for the potential use of curcumin in the treatment of ovarian cancer. © 2009 Wiley-Liss, Inc. [source] Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatinPHYTOTHERAPY RESEARCH, Issue 8 2009Ajay P. Singh Abstract Polyphenolic extracts of the principal flavonoid classes present in cranberry were screened in vitro for cytotoxicity against solid tumor cells lines, identifying two fractions composed principally of proanthocyanidins (PACs) with potential anticancer activity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analysis of the proanthocyanidins (PACs) fractions indicated the presence of A-type PACs with 1,4 linkages containing between 2,8 epicatechin units with a maximum of 1 epigallocatechin unit. PACs exhibited in vitro cytotoxicity against platinum-resistant human ovarian, neuroblastoma and prostate cancer cell lines (IC50 = 79,479 µg/mL) but were non-cytotoxic to lung fibroblast cells (IC50 > 1000 µg/ml). SKOV-3 ovarian cancer cells treated with PACs exhibited classic apoptotic changes. PACs acted synergistically with paraplatin in SKOV-3 cells. Pretreatment of SKOV-3 cells with PACs (106 µg/ml) resulted in a significant reduction of the paraplatin IC50 value. Similarly, in a BrdU incorporation assay, co-treatment of SKOV-3 cells with PACs and paraplatin revealed reduced cell proliferation at lower concentrations than with either individually. In SKOV-3 cell cultures co-treated with PAC-1 and paraplatin, an HPLC analysis indicated differential quantitative presence of various PAC oligomers such as DP-8, -9, -11 and -14 indicating either selective binding or uptake. Cranberry proanthocyanidins exhibit cell-line specific cytotoxicity, induce apoptotic markers and augment cytotoxicity of paraplatin in platinum-resistant SKOV-3 ovarian cancer cells. Copyright © 2009 John Wiley & Sons, Ltd. [source] Synthesis and anticancer activity of chalcogenide derivatives and platinum(II) and palladium(II) complexes derived from a polar ferrocene phosphanyl,carboxamideAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 5 2010í Schulz Abstract The polar phosphanyl-carboxamide, 1,-(diphenylphosphanyl)-1-[N -(2-hydroxyethyl)carbamoyl]ferrocene (1), reacts readily with hydrogen peroxide and elemental sulfur to give the corresponding phosphane-oxide and phosphane-sulfide, respectively, and with platinum(II) and palladium(II) precursors to afford various bis(phosphane) complexes [MCl2(1 -,P)2] (M = trans -Pd, trans -Pt and cis -Pt). The anticancer activity of the compounds was evaluated in vitro with the complexes showing moderate cytotoxicities towards human ovarian cancer cells. Moreover, the biological activity was found to be strongly influenced by the stereochemistry, with trans -[PtCl2(1 -,P)2] being an order of magnitude more active than the corresponding cis isomer. Copyright © 2010 John Wiley & Sons, Ltd. [source] NV-128, a novel isoflavone derivative, induces caspase-independent cell death through the Akt/mammalian target of rapamycin pathwayCANCER, Issue 14 2009Ayesha B. Alvero MD Abstract BACKGROUND: Resistance to apoptosis is 1 of the key events that confer chemoresistance and is mediated by the overexpression of antiapoptotic proteins, which inhibit caspase activation. The objective of this study was to evaluate whether the activation of an alternative, caspase-independent cell death pathway could promote death in chemoresistant ovarian cancer cells. The authors report the characterization of NV-128 as an inducer of cell death through a caspase-independent pathway. METHODS: Primary cultures of epithelial ovarian cancer (EOC) cells were treated with increasing concentration of NV-128, and the concentration that caused 50% growth inhibition (GI50) was determined using a proprietary assay. Apoptotic proteins were characterized by Western blot analyses, assays that measured caspase activity, immunohistochemistry, and flow cytometry. Protein-protein interactions were determined using immunoprecipitation. In vivo activity was measured in a xenograft mice model. RESULTS: NV-128 was able to induce significant cell death in both paclitaxel-resistant and carboplatin-resistant EOC cells with a GI50 between 1 ,g/mL and 5 ,g/mL. Cell death was characterized by chromatin condensation but was caspase-independent. The activated pathway involved the down-regulation of phosphorylated AKT, phosphorylated mammalian target of rapamycin (mTOR), and phosphorylated ribosomal p70 S6 kinase, and the mitochondrial translocation of beclin-1 followed by nuclear translocation of endonuclease G. CONCLUSIONS: The authors characterized a novel compound, NV-128, which inhibits mTOR and promotes caspase-independent cell death. The current results indicated that inhibition of mTOR may represent a relevant pathway for the induction of cell death in cells resistant to the classic caspase-dependent apoptosis. These findings demonstrate the possibility of using therapeutic drugs, such as NV-128, which may have beneficial effects in patients with chemoresistant ovarian cancer. Cancer 2009. © 2009 American Cancer Society. [source] Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancerCANCER, Issue 8 2008Aurelia Noske MD Abstract BACKGROUND The human nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 (CRM1) mediates the nuclear export of proteins and messenger RNAs and, thus, is an important regulator of subcellular distribution of key molecules. Whereas cell-biologic studies have suggested a fundamental role for CRM1 in the regulation of mitosis, the expression of this protein in human tumor tissue has not been investigated to date. METHODS In this study, the expression of CRM1 was analyzed in a cohort of 88 ovarian tumors and 12 ovarian cell lines for the first time to the authors' knowledge. RESULTS Immunohistochemistry revealed increased nuclear (52.7%) and cytoplasmic (56.8%) expression of CRM1 in 74 carcinomas compared with the expression revealed in borderline tumors and benign lesions. Similarly, CRM1 expression was increased in ovarian cancer cell lines compared with human ovarian surface epithelial cells. Cytoplasmic CRM1 expression was related significantly to advanced tumor stage (P = .043), poorly differentiated carcinomas (P = .011), and higher mitotic rate (P = .008). Nuclear CRM1 was associated significantly with cyclooxygenase-2 (COX-2) expression (P = .002) and poor overall survival (P = .01). Because it was demonstrated previously that blocking of CRM1 by leptomycin B (LMB) contributes to the inhibition of nuclear export, the authors used a set of mechanistic assays to study the effects of CRM1 inhibition in cancer cells. Treatment of OVCAR-3 cells with LMB revealed a significant reduction of cell proliferation and increased apoptosis as well as suppressed interleukin-1,-induced COX-2 expression. CONCLUSIONS The current results indicated that CRM1 is expressed in a subpopulation of ovarian carcinomas with aggressive behavior and is related to poor patient outcome. A correlation also was demonstrated between CRM1 and COX-2 expression in ovarian cancer tissue. Furthermore, the treatment of ovarian cancer cells with LMB revealed a reduction in COX-2 expression. Therefore, the authors suggest that CRM1 may be an interesting biomarker for the assessment of patient prognosis and a molecular target for anticancer treatment. Cancer 2008. © 2008 American Cancer Society. [source] Wilms tumor gene protein 1 is associated with ovarian cancer metastasis and modulates cell invasionCANCER, Issue 7 2008Maria V. Barbolina PhD Abstract BACKGROUND Although metastatic disease is the primary cause of death from epithelial ovarian carcinoma, to the authors' knowledge the cellular mechanisms that regulate intraperitoneal metastasis are largely unknown. Metastasizing ovarian carcinoma cells encounter a collagen-rich microenvironment because the submesothelial matrix is comprised mainly of interstitial collagens Types I and III. METHODS Immunohistochemistry using primary and metastatic ovarian carcinoma samples was employed to detect expression of Wilms tumor gene protein 1 (WT1). Three-dimensional (3D) collagen culture, real-time reverse transcriptase-polymerase chain reaction, and immunofluorescent staining were used to evaluate changes in WT1 RNA and protein expression in response to 3D collagen culture. Boyden chamber invasion assay, scratch-wound motility assay, and Western blot analysis were used to establish the function of WT1 in ovarian carcinoma cells. RESULTS To model intraperitoneal invasion in vitro, ovarian cancer cells were cultured in a 3D collagen microenvironment. 3D collagen culture resulted in robust induction of WT1 at the mRNA and protein levels. WT1 expression was prevalent in primary ovarian tumors and was retained in paired peritoneal metastases. Functional studies supported a role for WT1 in intraperitoneal invasion, because siRNA knockdown of WT1 expression reduced the ability of ovarian cancer cells to invade 3D collagen gels. CONCLUSIONS The data from the current study identify a novel regulatory mechanism for the control of WT1 expression and provide evidence for a functional role of WT1 protein in the control of cellular invasive activity. Cancer 2008. ©2008 American Cancer Society. [source] Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathwayCANCER SCIENCE, Issue 6 2010Zhen Zhao Rab5a is a regulatory guanosine triphosphatase that is associated with the transport and fusion of endocytic vesicles, and participates in regulation of intracellular signaling pathways embraced by cells to adapt to the specific environment. Rab5a is also correlated with lung, stomach, and hepatocellular carcinomas. Here, we detected Rab5a in paraffin-embedded samples of 20 ovarian cysts, 20 benign cystadenomas, and 39 ovarian cancers by immunohistochemistry, and observed that Rab5a expression was significantly higher in ovarian cancer (P = 0.0001). By setting up stable HO-8910 cell lines expressing Rab5a or dominant negative Rab5a (Rab5a:S34N), we found that Rab5a overexpression enhanced the cell growth by promoting G1 into S phase. In contrast, Rab5a:S34N inhibited this process. Additionally, APPL1 (adaptor protein containing PH domain, PTB domain, and Leucine zipper motif), a downstream effector of Rab5a, was also involved in promoting HO-8910 cell cycle progress. But this function was blocked by Rab5a:S34N. Laser scanning confocal microscopy represented the colocalization of APPL1 and Rab5a in the plasmolemma, which changed with the time of epidermal growth factor (EGF) stimulation. We also found APPL1 could transfer from the membranes into the nucleus where it interacted with NuRD/MeCP1 (the nucleosome remodeling and histone deacetylase multiprotein complex). NuRD is reported to be involved in the deacetylation of histone H3 and H4 to regulate nuclear transcription. So Rab5a promoted proliferation of ovarian cancer cells, which may be associated with the APPL1-related epidermal growth factor signaling pathway. (Cancer Sci 2010) [source] Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growthCANCER SCIENCE, Issue 4 2010Ki-Yon Kim Recent studies have shown that genetically engineered stem cells (GESTECs) to produce suicide enzymes that convert non-toxic prodrugs to toxic metabolites selectively migrate toward tumor sites and reduce tumor growth. In the present study, we evaluated whether these GESTECs were capable of migrating to human ovarian cancer cells and examined the potential therapeutic efficacy of the gene-directed enzyme prodrug therapy against ovarian cancer cells in vitro. The expression of cytosine deaminase (CD) or carboxyl esterase (CE) mRNA of GESTECs was confirmed by RT-PCR. A modified transwell migration assay was performed to determine the migratory capacity of GESTECs to ovarian cancer cells. GESTECs (HB1.F3.CD or HB1.F3.CE cells) engineered to express a suicide gene (CD or CE) selectively migrated toward ovarian cancer cells. A [3H] thymidine incorporation assay was conducted to measure the proliferative index. Treatment of human epithelial ovarian cancer cell line (SKOV-3, an ovarian adenocarcinoma derived from the ascites of an ovarian cancer patient) with the prodrugs 5-fluorocytosine (5-FC) or camptothecin-11 (CPT-11) in the presence of HB1.F3.CD or HB1.F3.CE cells resulted in the inhibition of ovarian cancer cell growth. Based on the data presented herein, we suggest that GESTECs expressing CD/CE may have a potent advantage to selectively treat ovarian cancers. (Cancer Sci 2010; 101: 955,962) [source] Therapeutic antitumor efficacy of monoclonal antibody against Claudin-4 for pancreatic and ovarian cancersCANCER SCIENCE, Issue 9 2009Masayo Suzuki Claudin-4 (CLDN4) is a tetraspanin transmembrane protein of tight junction structure and is highly expressed in pancreatic and ovarian cancers. In this study, we aimed to generate an anti-Claudin-4 monoclonal antibody (mAb) and evaluate its antitumor efficacy in vitro and in vivo. To isolate specific mAb, we generated CLDN3, 4, 5, 6, and 9, expressing Chinese hamster ovary (CHO) cells, and then used them as positive and negative targets through cell-based screening. As a result, we succeeded in isolating KM3900 (IgG2a), which specifically bound to CLDN4, from BXSB mice immunized with pancreatic cancer cells. Immunoprecipitation and flow cytometry analysis revealed that KM3900 recognized the conformational structure and bound to extracellular loop 2 of CLDN4. Furthermore, binding of KM3900 was detected on CLDN4-expressing pancreatic and ovarian cancer cells, but not on negative cells. Next, we made the mouse,human chimeric IgG1 (KM3934) and evaluated its antitumor efficacy. KM3934 induced dose-dependent antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro, and significantly inhibited tumor growth in MCAS or CFPAC-1 xenograft SCID mice in vivo (P < 0.05). These results suggest that mAb therapy against CLDN4 is promising for pancreatic and ovarian cancers. (Cancer Sci 2009; 100: 1623,1630) [source] Therapeutic strategy using phenotypic modulation of cancer cells by differentiation-inducing agentsCANCER SCIENCE, Issue 11 2007Yoshio Honma A low concentration of differentiation inducers greatly enhances the in vitro and in vivo antiproliferative effects of interferon (IFN), in several human cancer cells. Among the differentiation inducers tested, the sensitivity of cancer cells to IFN, was most strongly affected by cotylenin A. Cotylenin A, which is a novel fusicoccane diterpene glycoside with a complex sugar moiety, affected the differentiation of leukemia cells that were freshly isolated from acute myelogenous leukemia patients in primary culture. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor DR5 were early genes induced by the combination of cotylenin A and IFN, in carcinoma cells. Neutralizing antibody to TRAIL inhibited apoptosis, suggesting that cotylenin A and IFN, cooperatively induced apoptosis through the TRAIL signaling system. Combined treatment preferentially induced apoptosis in human lung cancer cells while sparing normal lung epithelial cells. In an analysis of various cancer cell lines, ovarian cancer cells were highly sensitive to combined treatment with cotylenin A and IFN, in terms of the inhibition of cell growth. This treatment was also effective toward ovarian cancer cells that were refractory to cisplatin, and significantly inhibited the growth of ovarian cancer cells as xenografts without apparent adverse effects. Ovarian cancer cells from patients were also sensitive to the combined treatment in primary cultures. Combined treatment with cotylenin A and IFN, may have therapeutic value in treating human cancers including ovarian cancer. (Cancer Sci 2007; 98: 1643,1651) [source] Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosisCELL PROLIFERATION, Issue 6 2006C. S. Coleman The goal of this study was to investigate whether syringolin A exhibits anti-proliferative properties in cancer cells. The treatment of human neuroblastoma (NB) cells (SK-N-SH and LAN-1) and human ovarian cancer cells (SKOV3) with syringolin A (0,100 µm) inhibited cell proliferation in a dose-dependent manner. The IC50 (50% inhibition) for each cell line ranged between 20 µm and 25 µm. In SK-N-SH cells, the treatment with 20 µm syringolin A led to a rapid (24 h) increase of the apoptosis-associated tumour suppressor protein p53. In addition, we found that the treatment of SK-N-SH cells caused severe morphological changes after 48 h such as rounding of cells and loss of adherence, both conditions observed during apoptosis. The induction of apoptosis by syringolin A was confirmed by both poly (ADP-ribose) polymerase (PARP) cleavage and annexin V assay. Taken together, we show for the first time that the natural product syringolin A exhibits anti-proliferative activity and induces apoptosis. Syringolin A and structurally modified syringolin A derivatives may serve as new lead compounds for the development of novel anticancer drugs. [source] |