Outside-in Signaling (outside-in + signaling)

Distribution by Scientific Domains


Selected Abstracts


Ligand binding of leukocyte integrin very late antigen-4 involves exposure of sulfhydryl groups and is subject to redox modulation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008
Si-Yen Liu
Abstract Activation of leukocyte integrins is important for selective recruitment of cells from the circulation to tissues. Our previous studies showed that the binding between the integrin very late antigen-4 (VLA-4) and vascular cell adhesion molecule-1 (VCAM-1) is modulated by reactive oxygen species. In this study, we investigated the molecular nature of redox modulation on the activation states of VLA-4 on human leukocytes. We found that ligand binding of VLA-4 induced exposure of sulfhydryl groups on the ,4 peptide. Low concentrations (5,10,µM) of exogenous hydrogen peroxide in the presence or absence of added glutathione enhanced the ligand binding ability of VLA-4 to VCAM-1 and cell rolling on VCAM-1, while higher concentrations (,100,µM) of hydrogen peroxide inhibited the binding. Exogenous hydrogen peroxide and glutathione induced molecular modification of S -glutathionylation on the ,4 peptide. The redox regulation of the VLA-4 binding activity required outside-in signaling and cytoskeleton rearrangement. Our results indicate that ligand binding of VLA-4 involves redox modulations which may play a pivotal role in regulating the activation states of VLA-4 in inflammatory tissues and hence direct leukocyte trafficking. [source]


SLIC-1/sorting nexin,20: A novel sorting nexin that directs subcellular distribution of PSGL-1

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008
Ulrich
Abstract P-Selectin glycoprotein ligand-1 (PSGL-1) is a mucin-like glycoprotein expressed on the surface of leukocytes that serves as the major ligand for the selectin family of adhesion molecules and functions in leukocyte tethering and rolling on activated endothelium and platelets. Previous studies have implicated the highly conserved cytoplasmic domain of PSGL-1 in regulating outside-in signaling of integrin activation. However, molecules that physically and functionally interact with this domain are not completely defined. Using a yeast two-hybrid screen with the cytoplasmic domain of PSGL-1 as bait, a novel protein designated selectin ligand interactor cytoplasmic-1 (SLIC-1) was isolated. Computer-based homology search revealed that SLIC-1 was the human orthologue for the previously identified mouse sorting nexin,20. Direct interaction between SLIC-1 and PSGL-1 was specific as indicated by co-immunoprecipitation and motif mapping. Colocalization experiments demonstrated that SLIC-1 contains a Phox homology domain that binds phosphoinositides and targets the PSGL-1/SLIC-1 complex to endosomes. Deficiency in the murine homologue of SLIC-1 did not modulate PSGL-1-dependent signaling nor alter neutrophil adhesion through PSGL-1. We conclude that SLIC-1 serves as a sorting molecule that cycles PSGL-1 into endosomes with no impact on leukocyte recruitment. [source]


Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2006
M. GAUR
Summary.,Background:,The platelet fibrinogen receptor, a heterodimer consisting of integrin subunits ,IIb and ,3, is required for platelet aggregation, spreading, and hemostasis. Platelet agonists such as thrombin and adenosine diphosphate (ADP) lead to the activation of ,IIb,3, thereby enhancing its affinity and avidity for binding fibrinogen (inside-out signaling). Furthermore, fibrinogen binding to ,IIb,3 triggers cytoskeletal changes and granule release (outside-in signaling).Aim:,Genetic approaches to characterize the molecular pathways involved in ,IIb,3 signaling are not possible with anucleate blood platelets. Therefore, we have established an OP9 stromal cell co-culture system to generate megakaryocytes from human embryonic stem cells (hESCs).Results:,,IIb,3 activation, measured by soluble fibrinogen binding to hESC-derived megakaryocytes, /GPIb,+ cells, is readily detectable following stimulation with known platelet agonists. Dose,response curves for peptide agonists specific for the two platelet thrombin receptors, protease-activated receptor 1 (PAR1) and PAR4, show a relative responsiveness that mirrors that of human platelets, and sub-maximal ADP responses are augmented by epinephrine. Moreover, hESC-derived megakaryocytes undergo lamellipodia formation, actin filament assembly, and vinculin localization at focal adhesions when plated on a fibrinogen-coated surface, characteristic of ,IIb,3 outside-in signaling. Undifferentiated hESCs genetically modified by lentiviral infection can be cloned and maintained in an undifferentiated state and then differentiated into megakaryocytes capable of ,IIb,3 activation.Conclusion:,Using hESCs, we have developed a renewable source of human megakaryocytes, and a genetically tractable system for studying megakaryocytopoiesis and ,IIb,3 signaling in the native cellular environment. [source]


Activation of the small GTPase Rap2B in agonist-stimulated human platelets

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2004
F. Greco
Summary., The activation of the small GTPase Rap2B in resting and agonist-stimulated human platelets was investigated. Both thrombin, that stimulates heterotrimeric G-protein-coupled receptors, and the GPVI ligand convulxin, that activates a tyrosine-kinase based signaling pathway, were able to induced the rapid and sustained binding of GTP to Rap2B. Similarly, a number of other agonists tested, previously known to activate the highly related protein Rap1B, were also able to stimulate Rap2B. In contrast, platelet antagonists that increase the intracellular concentration of cAMP did not signal to Rap2B. Thrombin- and convulxin-induced activation of Rap2B was not dependent on thromboxane A2, did not require the interaction of the protein with the cytoskeleton, and was not regulated by integrin ,IIb,3 -dependent outside-in signaling. When secreted ADP was neutralized, activation of Rap2B induced by thrombin, but not by convulxin, was significantly reduced. ADP itself was found to induce the rapid and sustained binding of GTP to Rap2B, and this effect was predominantly mediated by stimulation of the Gi-coupled P2Y12 receptor. Activation of Rap2B promoted by both thrombin and convulxin was regulated by intracellular Ca2+, while protein kinase C was found to be involved in convulxin- but not in thrombin-induced activation of Rap2B. Moreover, Rap2B activation induced by thrombin, but not by convulxin, was totally dependent on phosphatidylinositol 3-kinase activity. These results demonstrate that the small GTPase Rap2B is involved in platelet activation, and outline some important differences between the regulation of highly related GTPases Rap2B and Rap1B in human platelets. [source]