Outer Molecular Layer (outer + molecular_layer)

Distribution by Scientific Domains


Selected Abstracts


Glutamate transporter expression in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
C. Hein
Abstract The glutamate transporters GLT-1 and GLAST localized in astrocytes are essential in limiting transmitter signalling and restricting harmful receptor overstimulation. To show changes in the expression of both transporters following lesion of the entorhinal cortex (and degeneration of the glutamatergic tractus perforans), quantitative microscopic in situ hybridization (ISH) using alkaline-phosphatase-labelled oligonucleotide probes was applied to the outer molecular layer of the hippocampal dentate gyrus of rats (termination field of the tractus perforans). Four groups of rats were studied: sham-operated controls, and animals 3, 14 and 60 days following unilateral electrolytic lesion of the entorhinal cortex. The postlesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of quantitative ISH data. Statistical analysis revealed that ipsilateral to the lesion side there was a significant decrease of the GLT-1 mRNA at every postlesional time-point and of the GLAST mRNA at 14 and 60 days postlesion. The maximal decrease was ,,45% for GLT-1 and ,,35% for GLAST. In the terminal field of the perforant path contralateral to the lesion side, no significant changes of ISH labelling were measured. The results were complemented by immunocytochemical data achieved using antibodies against synthetic GLT-1 and GLAST peptides. In accordance with ISH results, there was an obvious decrease of GLT-1 and GLAST immunostaining in the terminal field of the perforant path ipsilateral to the lesion side. From these data we conclude that, following a lesioning of the entorhinal cortex, the loss of glutamatergic synapses in the terminal field of the perforant path resulted in a strong downregulation of glutamate transporters in astrocytes. The decrease of synaptically released glutamate or of other neuronal factors could be involved in this downregulation. [source]


The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000
Niklas Thon
Abstract The chondroitin sulphate proteoglycan brevican is one of the most abundant extracellular matrix molecules in the adult rat brain. It is primarily synthesized by astrocytes and is believed to influence astroglial motility during development and under certain pathological conditions. In order to study a potential role of brevican in the glial reaction after brain injury, its expression was analysed following entorhinal cortex lesion in rats (12 h, 1, 2, 4, 10, 14 and 28 days and 6 months post lesion). In situ hybridization and immunohistochemistry were employed to study brevican mRNA and protein, respectively, in the denervated outer molecular layer of the fascia dentata and at the lesion site. In both regions brevican mRNA was upregulated between 1 and 4 days post lesion. The combination of in situ hybridization with immunohistochemistry for glial fibrillary acidic protein demonstrated that many brevican mRNA-expressing cells are astrocytes. In the denervated zone of the fascia dentata, immunostaining for brevican was increased by 4 days, reached a maximum by 4 weeks and remained detectable up to 6 months post lesion. Electron microscopic immunocytochemistry showed that brevican is a component of the extracellular matrix compartment. At the lesion site a similar time course of brevican upregulation was observed. These data demonstrate that brevican is upregulated in areas of brain damage as well as in areas denervated by a lesion. They suggest a role of brevican in reactive gliosis and are compatible with the hypothesis that brevican is involved in the synaptic reorganization of denervated brain areas. [source]


Effect of Corticosteroid Treatment In Vitro on Adrenalectomy-Induced Impairment of Synaptic Transmission in the Rat Dentate Gyrus

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2000
Stienstra
Removal of the rat adrenals results after 3 days in the appearance of apoptotic cells in the dentate gyrus. Apoptosis is accompanied by an impaired synaptic transmission in the dentate gyrus. Substitution in vivo with a low dose of corticosterone was found to prevent both the appearance of apoptotic cells and the functional impairment. In the present study we determined whether the functional normalisation after corticosterone treatment critically depends on prevention of apoptosis. To address this question, brain slices from rats showing apoptosis after adrenalectomy were treated in vitro with the mineralocorticoid aldosterone (3 nM) or with 30 nM corticosterone, which is assumed to activate both mineralo- and glucocorticoid receptors. Steroids were briefly applied either during recording (acute effects) or several hours before recording (long-term effects). While the slope of the fEPSP recorded in the outer molecular layer of the dentate gyrus in response to perforant path stimulation was not affected up to 1 h after acute administration of the steroids, fEPSP slopes recorded 2.5,3 h after corticosterone or aldosterone treatment were significantly increased, to the level of the sham-operated controls. The results indicate that delayed corticosteroid effects through in vitro activation of mineralocorticoid receptors (MRs) are sufficient to normalise synaptic transmission in the dentate gyrus of ADX rats, even in the presence of apoptotic cells. We tentatively conclude that the impaired synaptic transmission seen after ADX is probably not primarily caused by the appearance of apoptotic cells. [source]


Chromogranins as markers of altered hippocampal circuitry in temporal lobe epilepsy

ANNALS OF NEUROLOGY, Issue 2 2001
Susanne Pirker MD
Chromogranins are polypeptides which are widely expressed in the central nervous system. They are stored in dense core vesicles of nerve terminals, from where they are released upon stimulation. Using immunocytochemistry, we investigated the distribution of chromogranin A, chromogranin B, secretoneurin, and, for comparison, dynorphin in hippocampal specimens removed at routine surgery from patients with drug-resistant mesial temporal lobe epilepsy and in autopsy tissues from nonneurologically deceased subjects. In post mortem controls (n = 21), immunoreactivity for all four peptides (most prominently for chromogranin B and dynorphin) was observed in the terminal field of mossy fibers. For chromogranins, staining was observed also in sectors CA1 to CA3 and in the subiculum. Chromogranin B immunoreactivity was found in the inner molecular layer of the dentate gyrus, the area of terminating associational-commissural fibers. Secretoneurin and dynorphin immunoreactivity labeled the outer molecular layer and the stratum lacunosum moleculare of sectors CA1 to CA3, where projections from the entorhinal cortex terminate. In specimens with Ammon's horn sclerosis (n = 25), staining for all three chromogranins and for dynorphin was reduced in the hilus of the dentate gyrus. Instead, intense staining was observed in the inner molecular layer, presumably delineating terminals of sprouted mossy fibers. Specimens obtained from temporal lobe epilepsy patients without Ammon's horn sclerosis (n = 4) lacked this pronounced rearrangement of mossy fibers. In the stratum lacunosum moleculare of sector CA1, secretoneurin and dynorphin immunoreactivity was reduced in sclerotic, but not in nonsclerotic, specimens, paralleling the partial loss of fibers arising from the entorhinal cortex. Instead, presumably sprouted secretoneurin-immunoreactive fibers were found in the outer dentate molecular layer in sclerotic specimens. These changes in staining patterns for chromogranins and dynorphin mark profound plastic and functional rearrangement of hippocampal circuitry in temporal lobe epilepsy. [source]