Home About us Contact | |||
Outer Limit (outer + limit)
Selected AbstractsObservations and interpretations at Vredefort, Sudbury, and Chicxulub: Towards an empirical model of terrestrial impact basin formationMETEORITICS & PLANETARY SCIENCE, Issue 5 2008Richard A. F. GRIEVE Assuming that the structures originally had the same morphology, the observations/interpretations for each structure are compared and extended to the other structures. This does not result in any major inconsistencies but requires that the observations be scaled spatially. In the case of Vredefort and Sudbury, this is accomplished by scaling the outer limit of particular shock metamorphic features. In the case of Chicxulub, scaling requires a reasoned assumption as to the formation mechanism of an interior peak ring. The observations/interpretations are then used to construct an integrated, empirical kinematic model for a terrestrial peak-ring basin. The major attributes of the model include: a set of outward-directed thrusts in the parautochthonous rocks of the outermost environs of the crater floor, some of which are pre-existing structures that have been reactivated during transient cavity formation; inward-directed motions along the same outermost structures and along a set of structures, at intermediate radial distances, during transient cavity collapse; structural uplift in the center followed by a final set of radially outward-directed thrusts at the outer edges of the structural uplift, during uplift collapse. The rock displacements on the intermediate, inward and innermost, outward sets of structures are consistent with the assumption that a peak ring will result from the convergence of the collapse of the transient cavity rim area and the collapse of the structural uplift. [source] Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in miceTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 13 2010David M. Berson Abstract Melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs). Melanopsin immunoreactivity reveals two dendritic plexuses within the inner plexiform layer (IPL) and morphologically heterogeneous retinal ganglion cells. Using enhanced immunohistochemistry, we provide a fuller description of murine cell types expressing melanopsin, their contribution to the plexuses of melanopsin dendrites, and mosaics formed by each type. M1 cells, corresponding to the originally described ganglion-cell photoreceptors, occupy the ganglion cell or inner nuclear layers. Their large, sparsely branched arbors (mean diameter 275 ,m) monostratify at the outer limit of the OFF sublayer. M2 cells also have large, monostratified dendritic arbors (mean diameter 310 ,m), but ramify in the inner third of the IPL, within the ON sublayer. There are ,900 M1 cells and 800 M2 cells per retina; each type comprises roughly 1,2% of all ganglion cells. The cell bodies of M1 cells are slightly smaller than those of M2 cells (mean diameters: 13 ,m for M1, 15 ,m for M2). Dendritic field overlap is extensive within each type (coverage factors ,3.8 for M1 and 2.5 for M2 cells). Rare bistratified cells deploy terminal dendrites within both melanopsin-immunoreactive plexuses. Because these are too sparsely distributed to permit complete retinal tiling, they lack a key feature of true ganglion cell types and may be anomalous hybrids of the M1 and M2 types. Finally, we observed weak melanopsin immunoreactivity in other ganglion cells, mostly with large somata, that may constitute one or more additional types of melanopsin-expressing cells. J. Comp. Neurol. 518:2405,2422, 2010. © 2010 Wiley-Liss, Inc. [source] Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice,THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 13 2010David M. Berson Abstract Melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs). Melanopsin immunoreactivity reveals two dendritic plexuses within the inner plexiform layer (IPL) and morphologically heterogeneous retinal ganglion cells. Using enhanced immunohistochemistry, we provide a fuller description of murine cell types expressing melanopsin, their contribution to the plexuses of melanopsin dendrites, and mosaics formed by each type. M1 cells, corresponding to the originally described ganglion-cell photoreceptors, occupy the ganglion cell or inner nuclear layers. Their large, sparsely branched arbors (mean diameter 275 ,m) monostratify at the outer limit of the OFF sublayer. M2 cells also have large, monostratified dendritic arbors (mean diameter 310 ,m), but ramify in the inner third of the IPL, within the ON sublayer. There are ,900 M1 cells and 800 M2 cells per retina; each type comprises roughly 1,2% of all ganglion cells. The cell bodies of M1 cells are slightly smaller than those of M2 cells (mean diameters: 13 ,m for M1, 15 ,m for M2). Dendritic field overlap is extensive within each type (coverage factors ,3.8 for M1 and 4.6 for M2 cells). Rare bistratified cells deploy terminal dendrites within both melanopsin-immunoreactive plexuses. Because these are too sparsely distributed to permit complete retinal tiling, they lack a key feature of true ganglion cell types and may be anomalous hybrids of the M1 and M2 types. Finally, we observed weak melanopsin immunoreactivity in other ganglion cells, mostly with large somata, that may constitute one or more additional types of melanopsin-expressing cells. J. Comp. Neurol. 518:2405,2422, 2010. © 2010 Wiley-Liss, Inc. [source] The riverscape of Western Amazonia , a quantitative approach to the fluvial biogeography of the regionJOURNAL OF BIOGEOGRAPHY, Issue 8 2007Tuuli Toivonen Abstract Aim, To provide a quantitative spatial analysis of the riverscape (open-water bodies and their surrounding areas) of the Western Amazonian lowlands using a consistent surface of remotely sensed imagery. Taking into account the essential significance of fluvial environments for the Amazonian biota, we propose that an enhanced understanding of the Amazonian riverscape will provide new insight for biogeographical studies in the region and contribute to the understanding of these megadiverse tropical lowlands. Location, An area of 2.2 million km2 covering the Western Amazonian lowlands of the Andean foreland region, i.e. the upper reaches of the Amazon river system. Areas in Colombia, Venezuela, Ecuador, Peru, Brazil and Bolivia between longitudes 83 °W and 65 °W and latitudes 5 °N and 12 °S are included. Methods, A mosaic of 120 Landsat TM satellite images was created with 100-m resolution, and water areas of over 1 ha in size or c. 60 m in width were extracted using a simple ratio threshold applicable to a large set of data. With this method, 99.1% of the water areas present in 30-m imagery were mapped with images with 100-m resolution. Water pixels of distinct river segments were assigned to river classes on the basis of their channel properties, and islands and lakes were distinguished separately and classified. Measures of water patterns such as structure, composition, richness and remoteness were provided for various spatial units. Riverine corridors were computed from the open-water mask by outer limits of active channels and floodplain lakes. Analytical results are shown as both thematic maps and statistics. Results, A total of 1.1% of Western Amazonia is covered by open-water bodies over 1 ha in size or 60 m in width. River-bound waters comprise 98% of the total water surface. Whilst isolated lakes are scarce, river-bound oxbow and backchannel lakes are plentiful, comprising 17.5% of all waters. They are particularly frequent along meandering channels, which dominate both in area and length. The riverine corridors including active channels and floodplain lakes cover 17% of the land area. The average distance from any point of land to the nearest water is 12 km. Geographically speaking, the distribution of waters is uneven across the region, and the detailed characteristics of the riverscape are geographically highly variable. Three major, fluvially distinct regions can be identified: central Western Amazonia, the south, and the north-east. The proportional surface areas of the riverine corridors, numbers of lakes, sizes of islands and their distributions depend largely on the types and sizes of the rivers. Main conclusions, Our results support the notion of Western Amazonia as a dynamic, highly fluvial environment, highlighting and quantifying considerable internal variation within the region in terms of fluvial patterns and the processes that they reflect and control. Biogeographically, the variety of types of fluvial environments and their characteristics are important constituents of what influences the distribution of species and dynamics of terrestrial habitats. Spatially consistent riverscape data can serve as a consistent and scalable source of relevant information for other biogeographical approaches in the region. [source] The haloes of planetary nebulae in the mid-infrared: evidence for interaction with the interstellar mediumMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009G. Ramos-Larios ABSTRACT The motion of planetary nebulae through the interstellar medium (ISM) is thought to lead to a variety of observational consequences, including the formation of bright rims, deformation and fragmentation of the shells, and a shift of the central stars away from the geometric centres of the envelopes. These and other characteristics have been noted through imaging in the visual wavelength regime. We report further observations of such shells taken in the mid-infrared (MIR), acquired through programmes of Infrared Array Camera imaging undertaken using the SpitzerSpace Telescope. NGC 2440 and NGC 6629 are shown to possess likely interacting haloes, together with ram-pressure-stripped material to one side of their shells. Similarly, the outer haloes of NGC 3242 and NGC 6772 appear to have been fragmented through Rayleigh,Taylor (RT) instabilities, leading to a possible flow of ISM material towards the inner portions of their envelopes. If this interpretation is correct, then it would suggest that NGC 3242 is moving towards the NE, a suggestion which is also supported through the presence of a 60 ,m tail extending in the opposite direction, and curved bands of H, emission in the direction of motion , components which may arise through RT instabilities in the magnetized ISM. NGC 2438 possesses strong scalloping at the outer limits of its asymptotic giant branch (AGB) halo, probably reflecting RT instabilities at the nebular/ISM interface We also note that the interior structure of the source has been interpreted in terms of a recombining shell, a hypothesis which may not be consistent with the central star luminosities. Finally, we point out that two of the rims (and likely shock interfaces) appear to have a distinct signature in the MIR, whereby relative levels of 8.0 ,m emission are reduced. This may imply that the grain emission agents are depleted in the post-shock AGB regimes. [source] |