Home About us Contact | |||
Outer Core (outer + core)
Selected AbstractsA glassy lowermost outer coreGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009Vernon F. Cormier SUMMARY New theories for the viscosity of metallic melts at core pressures and temperatures, together with observations of translational modes of oscillation of Earth's solid inner core, suggest a rapid increase in the dynamic viscosity near the bottom of the liquid outer core. If the viscosity of the lowermost outer core (F region) is sufficiently high, it may be in a glassy state, characterized by a frequency dependent shear modulus and increased viscoselastic attenuation. In testing this hypothesis, the amplitudes of high-frequency PKiKP waves are found to be consistent with an upper bound to shear velocity in the lowermost outer core of 0.5 km s,1 at 1 Hz. The fit of a Maxwell rheology to the frequency dependent shear modulus constrained by seismic observations at both low and high-frequency favours a model of the F region as a 400-km-thick chemical boundary layer. This layer has both a higher density and higher viscosity than the bulk of the outer core, with a peak viscosity on the order of 109 Pa s or higher near the inner core boundary. If lateral variations in the F region are confirmed to correlate with lateral variations observed in the structure of the uppermost inner core, they may be used to map differences in the solidification process of the inner core and flow in the lowermost outer core. [source] A thermochemical boundary layer at the base of Earth's outer core and independent estimate of core heat fluxGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2008David Gubbins SUMMARY Recent seismological observations suggest the existence of a ,150-km-thick density-stratified layer with a P -wave velocity gradient that differs slightly from PREM. Such a structure can only be caused by a compositional gradient, effects of a slurry or temperature being too small and probably the wrong sign. We propose a stably stratified, variable concentration layer on the liquidus. Heat is transported by conduction down the liquidus while the light and heavy components migrate through the layer by a process akin to zone refining, similar to the one originally proposed by Braginsky. The layer remains static in a frame of reference moving upwards with the expanding inner core boundary. We determine the gradient using estimates of co, the concentration in the main body of the outer core, and cb, the concentration of the liquid at the inner core boundary. We determine the depression of the melting point and concentrations using ideal solution theory and seismologically determined density jumps at the inner core boundary. We suppose that co determines ,,mod, the jump from normal mode eigenfrequencies that have long resolution lengths straddling the entire layer, and that cb determines ,,bod, the jump determined from body waves, which have fine resolution. A simple calculation then yields the seismic, temperature, and concentration profiles within the layer. Comparison with the distance to the C-cusp of PKP and normal mode eigenfrequencies constrain the model. We explore a wide range of possible input parameters; many fail to predict sensible seismic properties and heat fluxes. A model with ,,mod= 0.8 gm cc,1, ,,bod= 0.6 gm cc,1, and layer thickness 200 km is consistent with the seismic observations and can power the geodynamo with a reasonable inner core heat flux of ,2 TW and nominal inner core age of ,1 Ga. It is quite remarkable and encouraging that a model based on direct seismic observations and simple chemistry can predict heat fluxes that are comparable with those derived from recent core thermal history calculations. The model also provides plausible explanations of the observed seismic layer and accounts for the discrepancy between estimates of the inner core density jumps derived from body waves and normal modes. [source] Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implicationJOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2009Z. LÜ Abstract Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite-bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite-bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na-Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi-phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet-clinopyroxene thermometry yields peak temperatures of 420,520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P,T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4,2.7 GPa and 470,510 °C. Modelled modal abundances of major minerals along a 5 °C km,1 geothermal gradient suggests two critical dehydration processes at ,430 and ,510 °C respectively. Computed garnet composition patterns are in good agreement with measured core-rim profiles. The petrological study of coesite-bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP-LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP-LT assemblages at most localities. [source] Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1MOLECULAR MICROBIOLOGY, Issue 1 2008Mahendrasingh Ramjeet Summary Lipopolysaccharides (LPS) and Apx toxins are major virulence factors of Actinobacillus pleuropneumoniae, a pathogen of the respiratory tract of pigs. Here, we evaluated the effect of LPS core truncation in haemolytic and cytotoxic activities of this microorganism. We previously generated a highly attenuated galU mutant of A. pleuropneumoniae serotype 1 that has an LPS molecule lacking the GalNAc-Gal II-Gal I outer core residues. Our results demonstrate that this mutant exhibits wild-type haemolytic activity but is significantly less cytotoxic to porcine alveolar macrophages. However, no differences were found in gene expression and secretion of the haemolytic and cytotoxic toxins ApxI and ApxII, both secreted by A. pleuropneumoniae serotype 1. This suggests that the outer core truncation mediated by the galU mutation affects the toxins in their cytotoxic activities. Using both ELISA and surface plasmon resonance binding assays, we demonstrate a novel interaction between LPS and the ApxI and ApxII toxins via the core oligosaccharide. Our results indicate that the GalNAc-Gal II-Gal I trisaccharide of the outer core is fundamental to mediating LPS/Apx interactions. The present study suggests that a lack of binding between LPS and ApxI/II affects the cytotoxicity and virulence of A. pleuropneumoniae. [source] Secular changes of LOD associated with a growth of the inner coreASTRONOMISCHE NACHRICHTEN, Issue 4 2006C. Denis Abstract From recent estimates of the age of the inner core based on the theory of thermal evolution of the core, we estimate that nowadays the growth of the inner core may perhaps contribute to the observed overall secular increase of LOD caused mainly by tidal friction (i.e., 1.72 ms per century) by a relative decrease of 2 to 7 µs per century. Another, albeit much less plausible, hypothesis is that crystallization of the inner core does not produce any change of LOD, but makes the inner core rotate differentially with respect to the outer core and mantle. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |