Outer Boundary (outer + boundary)

Distribution by Scientific Domains


Selected Abstracts


Sprouting capacity of lumbar motoneurons in normal and hemisected spinal cords of the rat

THE JOURNAL OF PHYSIOLOGY, Issue 15 2010
T. Gordon
Nerve sprouting to reinnervate partially denervated muscles is important in several disease and injury states. To examine the effectiveness of sprouting of active and inactive motor units (MUs) and the basis for a limit to sprouting, one of three rat lumbar spinal roots was cut under normal conditions and when the spinal cord was hemisected at T12. Muscle and MU isometric contractile forces were recorded and muscle fibres in glycogen-depleted single muscle units enumerated 23 to 380 days after surgery. Enlargement of intact MUs by sprouting was effective in compensating for up to 80% loss of innervation. For injuries that removed >70,80% of the intact MUs, muscle contractile force and weight dropped sharply. For partial denervation of <70%, all MUs increased contractile force by the same factor in both normally active muscles and muscles whose activity was reduced by T12 hemisection. Direct measurements of MU size by counting glycogen-depleted muscle fibres in physiologically and histochemically defined muscle units, provided direct evidence for a limit in MU size, whether or not the activity of the muscles was reduced by spinal cord hemisection. Analysis of spatial distribution of muscle fibres within the outer boundaries of the muscle unit demonstrated a progressive increase in fibres within the territory to the limit of sprouting when most of the muscle unit fibres were adjacent to each other. We conclude that the upper limit of MU enlargement may be explained by the reinnervation of denervated muscle fibres by axon sprouts within the spatial territory of the muscle unit, formerly distributed in a mosaic pattern. [source]


A quantitative identification technique for a two-dimensional subsurface defect based on surface temperature measurement

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2009
Chunli Fan
Abstract The inverse identification of a subsurface defect boundary is an important part of an inverse heat conduction problem, and is also the basis for the quantitative development of a nondestructive thermographic inspection technique. For the commonly encountered quantitative thermographic defect identification problem when the test piece is heated from one part of the outer boundary, our previous study showed that some parts of the defect boundary are sensitive to the initial defect boundary prediction of the conjugate gradient method. In this paper, the heat transfer mechanism inside a test piece with this problem is analyzed by building a two-dimensional model. A new method, the multiple measurements combination method (MMCM), is also presented which combines the identification algorithm study with the optimization of the thermographic detection technique to solve the problem. Numerical experiments certified the effectiveness of the present method. The temperature measurement error and the initial prediction of the defect boundary shape have little effect on the identification result. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20251 [source]


Nucleation and growth of myrmekite during ductile shear deformation in metagranites

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2006
L. MENEGON
Abstract Myrmekite is extensively developed along strain gradients of continuous, lower amphibolite facies shear zones in metagranites of the Gran Paradiso unit (Western Alps). To evaluate the role of stress, strain energy and fluid phase in the formation of myrmekite, we studied a sample suite consisting of weakly deformed porphyric granites (WDGs), foliated granites (FGs) representative of intermediate strains, and mylonitic granites (MGs). In the protolith, most K-feldspar is microcline with different sets of perthite lamellae and fractures. In the WDGs, abundant quartz-oligoclase myrmekite developed inside K-feldspar only along preexisting perthite lamellae and fractures oriented at a high angle to the incremental shortening direction. In the WDGs, stress played a direct role in the nucleation of myrmekites along interfaces already characterized by high stored elastic strain because of lattice mismatch between K-feldspar and albite. In the FGs and MGs, K-feldspar was progressively dismembered along the growing network of microshear zones exploiting the fine-grained recrystallized myrmekite and perthite aggregates. This was accompanied by a more pervasive fluid influx into the reaction surfaces, and myrmekite occurs more or less pervasively along all the differently oriented internal perthites and fractures independently of the kinematic framework of the shear zone. In the MGs, myrmekite forms complete rims along the outer boundary of the small K-feldspar porphyroclasts, which are almost completely free of internal reaction interfaces. Therefore, we infer that the role of fluid in the nucleation of myrmekite became increasingly important as deformation progressed and outweighed that of stress. Mass balance calculations indicate that, in Al,Si-conservative conditions, myrmekite growth was associated with a volume loss of 8.5%. This resulted in microporosity within myrmekite that enhanced the diffusion of chemical components to the reaction sites and hence the further development of myrmekite. [source]


A two-dimensional electrodynamical outer gap model for ,-ray pulsars: ,-ray spectrum

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
J. Takata
ABSTRACT A two-dimensional electrodynamical model is used to study particle acceleration in the outer magnetosphere of a pulsar. The charge depletion from the Goldreich,Julian charge density causes a large electric field along the magnetic field lines. The charge particles are accelerated by the electric field and emit ,-rays via the curvature process. Some of the emitted ,-rays may collide with X-ray photons to make new pairs, which are accelerated again on the different field lines and emit ,-rays. We simulate the pair creation cascade in the meridional plane using the pair creation mean-free path, in which the X-ray photon number density is proportional to the inverse square of the radial distance. With the space charge density determined by the pair creation simulation, we solve the electric structure of the outer gap in the meridional plane and calculate the curvature spectrum. We investigate in detail the relation between the spectrum and total current, which is carried by the particles produced in the gap and/or injected at the boundaries of the gap. We demonstrate that the hardness of the spectrum is strongly controlled by the current carriers. Especially, the spectrum sharply softens if we assume a larger particle injection at the outer boundary of the outer gap. This is because the mean-free path of the pair creation of the inwardly propagating ,-ray photons is much shorter than the light radius, so many pairs are produced in the gap to quench the outer gap. Because the two-dimensional model can link both gap width along the magnetic field line and trans-field thickness with the spectral cut-off energy and flux, we can diagnose both the current through the gap and the inclination angle between the rotational and magnetic axes. We apply the theory to the Vela pulsar. By comparing the results with the Energetic Gamma Ray Experiment Telescope (EGRET) data, we rule out any cases that have a large particle injection at the outer boundary. We also suggest the inclination angle of ,inc, 65°. The present model predicts the outer gap starting from near the conventional null charge surface for the Vela pulsar. [source]


The effect of a finite mass reservoir on the collapse of spherical isothermal clouds and the evolution of protostellar accretion

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
E. I. Vorobyov
ABSTRACT Motivated by recent observations that detect an outer boundary for starless cores, and evidence for time-dependent mass accretion in the Class 0 and Class I protostellar phases, we re-examine the case of spherical isothermal collapse in the case of a finite mass reservoir. The presence of a core boundary, implemented through a constant-volume approximation in our simulation, results in the generation of an inward-propagating rarefaction wave. This steepens the gas density profile from r,2 (self-similar value) to r,3 or steeper. After a protostar forms, the mass accretion rate evolves through three distinct phases: (1) an early phase of decline in , which is a non-self-similar effect due to rapid and spatially non-uniform infall in the pre-stellar phase; (2) for large cores, an intermediate phase of near-constant from the infall of the outer part of the self-similar density profile, which has low (subsonic) infall speed in the pre-stellar phase; and (3) a late phase of rapid decline in when accretion occurs from the region affected by the inward-propagating rarefaction wave. Our model clouds of small to intermediate size make a direct transition from phase (1) to phase (3) above. Both the first and second phase (if the latter is indeed present) are characterized by a temporally increasing bolometric luminosity Lbol, while Lbol is decreasing in the third (final) phase. We identify the period of temporally increasing Lbol with the Class 0 phase, and the later period of terminal accretion and decreasing Lbol with the Class I phase. The peak in Lbol corresponds to the evolutionary time when 50 ± 15 per cent of the cloud mass has been accreted by the protostar. This is in agreement with the classification scheme proposed in the early 1990s by André et al.; our model adds a physical context to their interpretation. We show how our results can be used to explain tracks of envelope mass Menv versus Lbol for protostars in Taurus and Ophiuchus. We also develop an analytic formalism that successfully reproduces the protostellar accretion rate from profiles of density and infall speed in the pre-stellar phase. It shows that the spatial gradient of infall speed that develops in the pre-stellar phase is a primary cause of the temporal decline in during the early phase of protostellar accretion. [source]


Hydrodynamic Cell Model: General Formulation and Comparative Analysis of Different Approaches

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2007
Emiliy K. Zholkovskiy
Abstract This paper is concerned with the Cell Model method of addressing hydrodynamic flow through system of solid particles. The starting point of the analysis is the general problem formulation intended for describing a pressure driven flow through a diaphragm which can be considered as a set of representative cells having arbitrary shape and containing any number of particles. Using the general problem formulation, the hydrodynamic field inside an individual representative cell is interrelated with the applied pressure difference and the external flow velocity. To this end, four relationships containing integrals over the outer boundary of a representative cell are derived in the paper. Assuming that the representative cell is a sphere containing a single particle in the centre, the derived general relationships are transformed into outer cell boundary conditions employed in the literature by different authors. The general number of the obtained outer boundary conditions is more than the required number. Accordingly, by choosing different sets of the outer boundary conditions, different models are considered and compared with each other and with the results obtained by others for regular particle arrays. The common and different features of the hydrodynamic and electrodynamic versions of the Cell Model approaches are analyzed. Finally, it is discussed which version of the cell model gives the best approximation while describing pressure and electrically driven flows through a diaphragm and sedimentation of particles. On s'intéresse dans cet article à la méthode du Modèle de Cellules pour traiter l'écoulement à travers un système de particules solides. Le point de départ de l'analyse consiste à formuler le problème général dans le but de décrire un écoulement sous pression dans un diaphragme qui peut être considéré comme un ensemble de cellules représentatives de forme arbitraire et contenant un nombre quelconque de particules. À l'aide de cette formulation générale du problème, l'hydrodynamique dans une cellule représentative donnée est reliée à la différence de pression appliquée et à la vitesse d'écoulement externe. À cette fin, quatre relations contenant des intégrales sur la frontière d'une cellule représentative sont établies dans cette étude. Si l'on suppose que la cellule représentative est une sphère contenant une particule unique en son centre, les relations générales calculées peuvent être transformées en conditions à la frontière des cellules semblables à celles employées dans la littérature scientifique par différents auteurs. Le nombre général de conditions limites obtenues dépasse le nombre requis. Par conséquent, en choisissant différents ensembles de conditions limites, différents modèles sont considérés et comparés entre eux ainsi qu'avec les résultats obtenus pour des arrangements réguliers de particules. Les caractéristiques des versions hydrodynamiques et électrodynamiques des approches du Modèle de Cellules sont analysées. Finalement, on examine quelle version de modèle de cellule donne la meilleure approximation des écoulements sous pression et des écoulements électrodynamiques à travers un diaphragme et pour la sédimentation des particules. [source]


Temporal behaviour of global perturbations in compressible axisymmetric flows with free boundaries

ASTRONOMISCHE NACHRICHTEN, Issue 1 2009
V.V. Zhuravlev
Abstract The dynamics of small global perturbations in the form of a linear combination of a finite number of non-axisymmetric eigenmodes is studied in the two-dimensional approximation. The background flow is assumed to be an axisymmetric perfect fluid with adiabatic index , = 5/3 rotating with a power law angular velocity distribution , , r,q, 1.5 < q < 2.0, confined by free boundaries in the radial direction. The substantial transient growth of acoustic energy of optimized perturbations is discovered. An optimal energy growth G is calculated numerically for a variety of parameters. Its value depends essentially on the perturbation azimuthal wavenumber m and increases for higher values of m. The closer the rotation profile to the Keplerian law, the larger growth factors can be obtained but over a longer time. The highest acoustic energy increase found numerically is of order ,102 over ,6 typical Keplerian periods. Slow neutral eigenmodes with corotation radius beyond the outer boundary mostly contribute to the transient growth. The revealed linear temporal behaviour of perturbations may play an important role in angular momentum transfer in toroidal flows near compact relativistic objects (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]