Home About us Contact | |||
Outer Blocks (outer + block)
Selected AbstractsSynthesis and characterization of multiblock copolymers composed of poly(5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one) outer blocks and poly(L -lactide) inner blocksJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2006Jamie M. Messman Abstract Ethylene glycol (EG) initiated, hydroxyl-telechelic poly(L -lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) with the goal of creating A,B,A-type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A,(B,A)n,B,A type were actually obtained, where A is poly(5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number-average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number-average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide-angle X-ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high-conversion L -lactide polymerizations resulted in excessive randomization, presumably because of residual L -lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817,6835, 2006 [source] N -Isopropylacrylamide/2-Hydroxyethyl Methacrylate Star Diblock Copolymers: Synthesis and Thermoresponsive BehaviorMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 24 2006Zhiqiang Cao Abstract Summary: Tri-arm star diblock copolymers, poly(2-hydroxyethyl methacrylate)- block -poly(N -isopropylacrylamide) [P(HEMA- b -NIPAAm)] with PHEMA and PNIPAAm as separate inner and outer blocks were synthesized via a two-step ATRP at room temperature. The formation, molecular weight and distribution of polymers were examined, and the kinetics of the reaction was monitored. The PDI of PHEMA was shown to be lower, indicating well-controlled polymerization of trifunctional macro-initiator and resultant star copolymers. The thermoresponsive behavior of diblock copolymer aqueous solution were studied by DSC, phase diagrams, temperature-variable 1H NMR, TEM and DLS. The results revealed that introducing a higher ratio of HEMA into copolymers could facilitate the formation of micelles and the occurrence of phase transition at lower temperatures. TEM images showed that I-(HEMA40 -NIPAAm320)3 solutions developed into core-shell micelles with diameters of approximately 100 nm. I-(HEMA40 -NIPAAm320)3 was used as a representative example to elucidate the mechanism underlying temperature-induced phase transition of copolymer solution. In this study we proposed a three-stage transition process: (1) separately dispersed micelles state at ,17,22,°C; (2) aggregation and fusion of micelles at ,22,29,°C; (3) sol-gel transition of PNIPAAm segments at ,29,35,°C, and serious syneresis of shell layers. Molecular architecture of Poly(HEMA- b -NIPAAm). [source] Physical Properties of PBMA- b -PBA- b -PBMA Triblock Copolymers Synthesized by Atom Transfer Radical PolymerizationMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 16 2003Luis Martín-Gomis Abstract The physical properties of well-defined poly(butyl methacrylate)- block -poly(butyl acrylate)- block -poly(butyl methacrylate) (PBMA- b -PBA- b -PBMA) triblock copolymers synthesized by atom transfer radical polymerization (ATRP) are reported. The glass transition and the degradation temperature of copolymers were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC measurements showed phase separation for all of the copolymers with the exception of the one with the shortest length of either inner or outer blocks. TGA demonstrated that the thermal stability of triblock copolymers increased with decreasing BMA content. Dynamic mechanical analysis was used for a preceding evaluation of adhesive properties. In these block copolymers, the deformation process under tension can take place either homogeneously or by a neck formation depending on the molecular weight of the outer BMA blocks and on the length of the inner soft BA segments. Microindentation measurements were also performed for determining the superficial mechanical response and its correlation with the bulk behavior. Stress-strain curves for the different PBMA- b -PBA- b -PBMA specimens at room temperature and at 10 mm/min. [source] Molecule-Responsive Block Copolymer MicellesCHEMISTRY - A EUROPEAN JOURNAL, Issue 16 2007Yoshihiro Ishihara Abstract Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP,THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning. [source] |