Outbreeding Depression (outbreeding + depression)

Distribution by Scientific Domains


Selected Abstracts


HETEROSIS AND OUTBREEDING DEPRESSION IN DESCENDANTS OF NATURAL IMMIGRANTS TO AN INBRED POPULATION OF SONG SPARROWS (MELOSPIZA MELODIA)

EVOLUTION, Issue 1 2002
Amy B. Marr
Abstract We studied heterosis and outbreeding depression among immigrants and their descendants in a population of song sparrows on Mandarte Island, Canada. Using data spanning 19 generations, we compared survival, seasonal reproductive success, and lifetime reproductive success of immigrants, natives (birds with resident-hatched parents and grandparents), and their offspring (F1s, birds with an immigrant and a native parent, and F2s, birds with an immigrant grandparent and resident-hatched grandparent in each of their maternal and paternal lines). Lifetime reproductive success of immigrants was no worse than that of natives, but other measures of performance differed in several ways. Immigrant females laid later and showed a tendency to lay fewer clutches, but had relatively high success raising offspring per egg produced. The few immigrant males survived well but were less likely to breed than native males of the same age that were alive in the same year. Female F1s laid earlier than expected based on the average for immigrant and native females, and adult male F1s were more likely to breed than expected based on the average for immigrant and native males. The performance differences between immigrant and native females and between F1s and the average of immigrants and natives are consistent with the hypothesis that immigrants were disadvantaged by a lack of site experience and that immigrant offspring benefited from heterosis. However, we could not exclude the possibility that immigrants had a different strategy for optimizing reproductive success or that they experienced ecological compensation for life-history parameters. For example, the offspring of immigrants may have survived well because immigrants laid later and produced fewer clutches, thereby raising offspring during a period of milder climatic conditions. Although sample sizes were small, we found large performance differences between F1s and F2s, which suggested that either heterosis was associated with epistasis in F1s, that F2s experienced outbreeding depression, or that both phenomena occurred. These findings indicate that the performance of dispersers may be affected more by fine-scale genetic differentiation than previously assumed in this and comparable systems. [source]


Typological thinking and the conservation of subspecies: the case of the San Clemente Island loggerhead shrike

DIVERSITY AND DISTRIBUTIONS, Issue 4 2000
Michael A. Patten
Abstract. ,Hybridization with closely related taxa poses a significant threat to endangered subspecies (e.g. outbreeding depression, inbreeding) and confounds efforts to manage and conserve these taxa through a loss of taxonomic identity, in part because of the practical necessity of defining subspecies in a typological manner. We examined nine morphological characters in 167 post-juvenile museum specimens to determine if loggerhead shrikes Lanius ludovicianus Linnaeus 1766 on San Clemente Island (off the coast of California) remain diagnosable as L. l. mearnsi Ridgway (1903); an island endemic listed as endangered by the United States Fish and Wildlife Service. Four recent shrike specimens from the island were compared to historical specimens using a bivariate scatter plot and a discriminant function (the latter was used to classify recent specimens post hoc). The few recent specimens were not diagnosable as L. l. mearnsi, but instead appear to be intergrades between L. l. mearnsi and L. l. anthonyi Mearns 1898 (the subspecies endemic to Santa Cruz, Santa Catalina, Santa Rosa and Anacapa islands), and are perhaps closer to pure anthonyi. Our data and the species' natural history and distribution suggest that shrikes currently on San Clemente Island are the result of genetic ,swamping' of mearnsi by anthonyi. Under a necessarily typological definition of a subspecies, it is evident that mearnsi is probably no longer diagnosable. However, we conclude that protection of the entire Channel Islands population of the loggerhead shrike would be the best management strategy, as the species has declined drastically throughout the islands. [source]


INTERPOPULATION HYBRID BREAKDOWN MAPS TO THE MITOCHONDRIAL GENOME

EVOLUTION, Issue 3 2008
Christopher K. Ellison
Hybrid breakdown, or outbreeding depression, is the loss of fitness observed in crosses between genetically divergent populations. The role of maternally inherited mitochondrial genomes in hybrid breakdown has not been widely examined. Using laboratory crosses of the marine copepod Tigriopus californicus, we report that the low fitness of F3 hybrids is completely restored in the offspring of maternal backcrosses, where parental mitochondrial and nuclear genomic combinations are reassembled. Paternal backcrosses, which result in mismatched mitochondrial and nuclear genomes, fail to restore hybrid fitness. These results suggest that fitness loss in T. californicus hybrids is completely attributable to nuclear,mitochondrial genomic interactions. Analyses of ATP synthetic capacity in isolated mitochondria from hybrid and backcross animals found that reduced ATP synthesis in hybrids was also largely restored in backcrosses, again with maternal backcrosses outperforming paternal backcrosses. The strong fitness consequences of nuclear,mitochondrial interactions have important, and often overlooked, implications for evolutionary and conservation biology. [source]


HETEROSIS AND OUTBREEDING DEPRESSION IN DESCENDANTS OF NATURAL IMMIGRANTS TO AN INBRED POPULATION OF SONG SPARROWS (MELOSPIZA MELODIA)

EVOLUTION, Issue 1 2002
Amy B. Marr
Abstract We studied heterosis and outbreeding depression among immigrants and their descendants in a population of song sparrows on Mandarte Island, Canada. Using data spanning 19 generations, we compared survival, seasonal reproductive success, and lifetime reproductive success of immigrants, natives (birds with resident-hatched parents and grandparents), and their offspring (F1s, birds with an immigrant and a native parent, and F2s, birds with an immigrant grandparent and resident-hatched grandparent in each of their maternal and paternal lines). Lifetime reproductive success of immigrants was no worse than that of natives, but other measures of performance differed in several ways. Immigrant females laid later and showed a tendency to lay fewer clutches, but had relatively high success raising offspring per egg produced. The few immigrant males survived well but were less likely to breed than native males of the same age that were alive in the same year. Female F1s laid earlier than expected based on the average for immigrant and native females, and adult male F1s were more likely to breed than expected based on the average for immigrant and native males. The performance differences between immigrant and native females and between F1s and the average of immigrants and natives are consistent with the hypothesis that immigrants were disadvantaged by a lack of site experience and that immigrant offspring benefited from heterosis. However, we could not exclude the possibility that immigrants had a different strategy for optimizing reproductive success or that they experienced ecological compensation for life-history parameters. For example, the offspring of immigrants may have survived well because immigrants laid later and produced fewer clutches, thereby raising offspring during a period of milder climatic conditions. Although sample sizes were small, we found large performance differences between F1s and F2s, which suggested that either heterosis was associated with epistasis in F1s, that F2s experienced outbreeding depression, or that both phenomena occurred. These findings indicate that the performance of dispersers may be affected more by fine-scale genetic differentiation than previously assumed in this and comparable systems. [source]


OUTBREEDING DEPRESSION VARIES AMONG COHORTS OF IPOMOPSIS AGGREGATA PLANTED IN NATURE

EVOLUTION, Issue 2 2000
Nickolas M. Waser
Abstract., Outbreeding depression in progeny fitness may arise from disruption of local adaptation, disruption of allelic coadaptation, or a combination of these "environmental" and "physiological" mechanisms. Thus the minimum spatial scale over which outbreeding depression arises should depend on the spatial scale of gene dispersal and (with an environmental mechanism) of change in selection regimes. We previously reported substantial outbreeding depression in lifetime fitness of progeny resulting from crosses among parents separated by 100 m in natural populations of the herbaceous plant Ipomopsis aggregata. In this paper we explore the effect of crossing distance on fitness in two additional experiments begun in 1987 and 1990. We planted seed progeny derived from partial diallel crossing designs in randomized blocks in maternal environments and scored emergence of seedlings, survival, and eventual flowering of individuals over the subsequent six to eight years. Nested within each diallel design were crossing distances of 1 m, 10 m, and 100 m. Compared to 1-m and 10-m progeny, 100-m progeny of the 1987 diallel suffered a significant reduction in seedling emergence, and both 1-m and 100-m progeny that survived to flower achieved lower ,-values on average than 10-m progeny. Total outbreeding depression suffered by 100-m relative to 10-m progeny was approximately 10%, compared to approximately 30% in our earlier study of I. aggregata. Progeny of 10-m crosses also outperformed 1-m and 100-m progeny of the 1990 diallel by approximately 5%, but no difference among crossing distance treatments was significant. Thus, the magnitude of outbreeding depression in 100-m crosses varied among experiments. This is not surprising given likely spatial and temporal variation in gene flow and selection regimes, different population histories, and different parental and progeny environments. Characterizing outbreeding depression on the shortest spatial scales over which it is expressed, as well as its variation and causes, is worthwhile because it promises to shed light on the earliest stages of angiosperm speciation. [source]


Seed supply for broadscale restoration: maximizing evolutionary potential

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 4 2008
Linda M. Broadhurst
Abstract Restoring degraded land to combat environmental degradation requires the collection of vast quantities of germplasm (seed). Sourcing this material raises questions related to provenance selection, seed quality and harvest sustainability. Restoration guidelines strongly recommend using local sources to maximize local adaptation and prevent outbreeding depression, but in highly modified landscapes this restricts collection to small remnants where limited, poor quality seed is available, and where harvesting impacts may be high. We review three principles guiding the sourcing of restoration germplasm: (i) the appropriateness of using ,local' seed, (ii) sample sizes and population characteristics required to capture sufficient genetic diversity to establish self-sustaining populations and (iii) the impact of over-harvesting source populations. We review these topics by examining current collection guidelines and the evidence supporting these, then we consider if the guidelines can be improved and the consequences of not doing so. We find that the emphasis on local seed sourcing will, in many cases, lead to poor restoration outcomes, particularly at broad geographic scales. We suggest that seed sourcing should concentrate less on local collection and more on capturing high quality and genetically diverse seed to maximize the adaptive potential of restoration efforts to current and future environmental change. [source]


A restoration genetics guide for coral reef conservation

MOLECULAR ECOLOGY, Issue 12 2008
ILIANA B. BAUMS
Abstract Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects. [source]


Inbreeding, outbreeding and environmental effects on genetic diversity in 46 walleye (Sander vitreus) populations

MOLECULAR ECOLOGY, Issue 2 2006
CHRISTOPHER J. CENA
Abstract Genetic diversity is recognized as an important population attribute for both conservation and evolutionary purposes; however, the functional relationships between the environment, genetic diversity, and fitness-related traits are poorly understood. We examined relationships between selected lake parameters and population genetic diversity measures in 46 walleye (Sander vitreus) populations across the province of Ontario, Canada, and then tested for relationships between six life history traits (in three categories: growth, reproductive investment, and mortality) that are closely related to fitness, and genetic diversity measures (heterozygosity, d2, and Wright's inbreeding coefficient). Positive relationships were observed between lake surface area, growing degree days, number of species, and hatchery supplementation versus genetic diversity. Walleye early growth rate was the only life history trait significantly correlated with population heterozygosity in both males and females. The relationship between FIS and male early growth rate was negative and significant (P < 0.01) and marginally nonsignificant for females (P = 0.06), consistent with inbreeding depression effects. Only one significant relationship was observed for d2: female early growth rate (P < 0.05). Stepwise regression models showed that surface area and heterozygosity had a significant effect on female early growth rate, while hatchery supplementation, surface area and heterozygosity had a significant effect on male early growth rate. The strong relationship between lake parameters, such as surface area, and hatchery supplementation, versus genetic diversity suggests inbreeding and outbreeding in some of the populations; however, the weak relationships between genetic diversity and life history traits indicate that inbreeding and outbreeding depression are not yet seriously impacting Ontario walleye populations. [source]


Lower fitness of hatchery and hybrid rainbow trout compared to naturalized populations in Lake Superior tributaries

MOLECULAR ECOLOGY, Issue 11 2004
L. M. MILLER
Abstract We have documented an early life survival advantage by naturalized populations of anadromous rainbow trout Oncorhynchus mykiss over a more recently introduced hatchery population and outbreeding depression resulting from interbreeding between the two strains. We tested the hypothesis that offspring of naturalized and hatchery trout, and reciprocal hybrid crosses, survive equally from fry to age 1+ in isolated reaches of Lake Superior tributary streams in Minnesota. Over the first summer, offspring of naturalized females had significantly greater survival than offspring of hatchery females in three of four comparisons (two streams and 2 years of stocking). Having an entire naturalized genome, not just a naturalized mother, was important for survival over the first winter. Naturalized offspring outperformed all others in survival to age 1+ and hybrids had reduced, but intermediate, survival relative to the two pure crosses. Averaging over years and streams, survival relative to naturalized offspring was 0.59 for hybrids with naturalized females, 0.37 for the reciprocal hybrids, and 0.21 for hatchery offspring. Our results indicate that naturalized rainbow trout are better adapted to the conditions of Minnesota's tributaries to Lake Superior so that they outperform the hatchery-propagated strain in the same manner that many native populations of salmonids outperform hatchery or transplanted fish. Continued stocking of the hatchery fish may conflict with a management goal of sustaining the naturalized populations. [source]